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ABSTRACT

The search for a universal solution of the equations of motion for a satellite or-

biting an oblate planet is a subject that has merited great interest because of its

theoretical implications and practical applications. The discovery of such a solu-

tion should motivate a reassessment of both the theories that exhibit singularities

and the physical effects implied by singularities. The practical importance of such

a solution is the efficiency of simple analytic formulas in predicting simultaneously

the paths of large numbers of satellites in a multitude of orbits. Here, a complete

first order solution to the problem of a satellite, perturbed only by the oblateness

of the Earth, is displayed. The orbit is free of singulaTities for all parameters and

is valid for 1000 revolutions with a reldtive error of the order J2 ; 10-6.
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NOTATION

a semi major axis of the initial instantaneous ellipse

C Cos i0

e eccentric:'y of the initial instantaneous ellipse (0 < e << 1)

h co-,st nt value of r2c °s2 6 along an orbit, approximately equal to thecoo - dt

initial magnitute of angular momentum

t inclination of reference plane

i0  initial value of i

J 2  oblateness coefficient of the planet (coefficient of the second harmonic in

the expansion of the gravitational potential)

j 3(-72R2)

p h2 /GM where G is the gravitational constant and M is the mass of the

planet

R equatorial radius of the planet

r radial distance from the center of the planet to the satellite

s sin 10

t time

t0  initial value of t

U r

V gravitational potential

6 latitude of the satellite

0 longitude of the satellite

0 angle from line NON' to the satellite measured in the reference plane

(Fig. 5.1)

0 initial value of 0

f2 longitude of line NON' (Fig. 5.1)

fl initial value of f2

argijmeni of pcrigc,( of the initial instantaneous ellipse
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I. INTRODUCTION

A characteristic feature of practical satellite orbit prediction is that the engi-

neer may deal with numerous satellites in a great variety of alternative orbits. Un-

der these and many other such circumstances analytic relations which can quickly

approximate an orbit may be far superior to large numerical models. While many

analytic methods have been developed for the artificial satellite age, most are not

used in practical orbit prediction because they violate one or more of the following

principles:

* The method should provide a solution that is significantly more accurate
than the two-body solution.

" The real physical effects of the orbit should be easily distinguishable in the
solution.

" The solution should be universal; it should be valid for all orbital parameters.

The motivation for this research was the desire to develop a method for satellite

prediction that would embody these characteristics.

In this analysis, a solution to the equations of motion of a satellite around an

oblate planet is found by use of a variation of the perturbation technique known

as the Method of Strained Coordinates. The orbit is valid for 1000 revolutions

,vith a relative error of 10- 6 . The solution which is valid for all eccentricities and

for all inclinations, was obtained by extensive use of the symbolic manipulation

program MACSYMA.

The analysis begins with a background discussion of some of the competing

satellite orbit theories. There is then a development of the equations of motion

beginning with a derivation of the two-body solution. The various forces which act

.. ...



to disturb the two-body orbit are highlighted; a more thorough discussion is given

for the effects of oblateness. There is a complete treatment of the perturbation

technique as the equations of motion are solved in detail. The complete first order

solution is displayed as a function of coordinates and as a function of the orbital

elements. In addition, an independent analysis of the polar and equatorial orbits

is performed to serve as a check of the general solution.
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II. BACKGROUND

A. INTRODUCTION

The theory of flight of artificial satellites is closely related to classical celes-

tial mechanics, one of the oldest and most highly developed branches of science.

The equations which describe the motion of an artificial satellite are in principle

identical to the equations of motion of natural celestial bodies. It is not surprising

then that the results originally derived in classical celestial mechanics have been

freely used to explain the motion of artificial celestial bodies.

The foundations of classical celestial mechanics were established in the eigh-

teenth century when Clairaut, d'Alembert, Laplace, Lagrange, and Euler intro-

duced theories and analytical methods to explain the large deviation of the Moon

from an elliptic orbit due to solar attraction. These theories all supplemented

or complemented the pioneer work that had been done by Newton. Newton had

correctly indicated the Moon's variation in eccentricity and inclination and the re-

gression of the nodes; however, his published theory accounted for only half of the

motion of perigee. (A century later an unpublished work was found to contain the

full explanation.) Clairaut in 1749 was on the verge of substituting a new law of

gravitation for the Newtonian law when he found that second order perturbations

removed the discrepancy in the motion of perigee.

In that same century, Euler investigated and developed the perturbative

function and began the development of the method of variation of parameters,

which was later extended by Lagrange.

3



Lagrange, Laplace, and Poisson all advanced the discipline through their

investigation of the stability of the solar system. Later, in the nineteenth cen-

tury, the use of Hamiltonian mechanics was used to great advantage by Delaunay

whose work influenced the innovators of artificial satellite orbit prediction, namely

Brouwer, Kozai, and Garfinkel.

The introduction of the modern computer and the launch of the first artifi-

cial satellites had a profound effect on the science of celestial mechanics. Classical

celestial mechanics had been essentially a contemplative science with the principle

aim being to study the laws of motion of existing heavenly bodies. In contrast, the

science of the flight of artificial satellites is an active engineering science concerned

with determining or predicting relatively short term orbits, and in many cases con-

trolling the satellite's motion through on-board propulsive devices. It was in the

exciting climate, following the successful launchings of the first artificial satellites,

that most of the new methods of satellite orbit prediction were developed.

B. THE USE OF HAMILTONIAN MECHANICS IN SATELLITE

ORBIT PREDICTION

There are certain schools of thought in dynamic astronomy and theoretical

physics that support the loyal use of Hamiltonian mechanics [Ref. 1, p. 2281,

and many of the new methods in general perturbations take advantage of the

elegant formalism offered by the Hamiltonian method. The Hamiltonian method

is referred to here as the formal process of writing the equations of motion for a

satellite in the canonical form:

dq7 _ H dp,. -dHdt ap dt - oq7  (r = 1,2...3n) (2.1)dt ap dt aq,

where q, - generalized coordinates

nn



P, generalized momenta
Sn dqr

1 dt

(H is the Hamiltonian and L is the Lagrangian, L = T - V, kinetic energy -

potential energy).

The solution to (2.1) may be written down If a function S can be found, where S

is any complete solution of the Hamilton-Jacobi equation

as ( /as
+ H q,, -,t =0 (2.2)

it should be noted that (2.2) is tractable only if the variables q, and t are separable

within S and H.

Although this present analysis does not use Hamiltonian mechanics to solve

the equations of motion, a summary of its use is merited since the advances in this

area have been an invaluable contribution to general perturbation theory.

In celestial mechanics, one may formulate a Hamiltonian that represents the

gravitational attraction of the central force and add to it terms which are "per-

turbing Hamiltonians." Various sets of canonic variables may be chosen with the

goal of expressing a zero-order Hamiltonian in a simple form and the higher order

effects in an iterative fashion. Each term then may be dealt with through a succes-

sion of canonic transformations. Delauney introduced a systematic procedure for

isolating parts of the Hamiltonian and then generating a suitable transformation

in successive steps. A particular feature of his approach is that a periodic term in

the Hamiltonian may be eliminated with each canonical transformation [Ref. 21.

While DeLauney used a procedure that eliminated one term at a time, von Ziepei

devised a technique that eliminates one angular variable with each transformation.

This method reduces the numb,- of degrees of freedom while at the same time



imparting to the transformed Hamiltonian a symmetry of the unperturbed system

[Ref. 1]. The eliminated variables are referred to as ignorable coordinates since

they do not participate in the solution of the transformed equations of motion but

can be recovered after the solution has been obtained.

Using von Ziepel's method, Brouwer devised one of the most notable general

perturbation theories [Ref. 31. Prior to Brouwer's method, all previous work in

artificial satellite theory had written the Hamiltonian as a Fourier series in the

mean anomaly with coefficients that were infinite series in powers of the eccen-

tricity. Brouwer used an elliptic approximation for the potential and obtained a

complete first order theory with some second order development using canonical

transformations. The essence of Brouwer's method was to write equations (2.1) as

dLj _ aH dlI _ -H (2.3)

dt al, dt aL,
where

L 1 = vG a 11 = M

L2 =L, 1i- -e 2  12 =w
L 3 = L2 cosi 13 fl

are the Delauney variables where

a - semimajor axis e - eccentricity

i - inclination M - mean anomaly
w - argument of perigee fZ - longitude of

ascending node

Referring back to the Hamilton Jacobi equation (2.2), the function S is used as

a generating function to find a new Hamiltonian that leads to simplified canonic

equations. By choosing S correctly, Brouwer was able to find a canonical transfor-

mation from the Delauney variables to a set of double primed Delauney variables

(L;, I') such that (2.3) have the form

6



dL"' ,i; aHl
3 =0 -(2.4)

dt dt e3Lj

where H" is the Hamiltonian expressed in terms of double primed orbital elements

by

L"= vUX 17=M"

L" =/, -e" In = W"
2=~x/T 1 2w

M= L cosi" 1 = 12"

The double primed orbital elements are related to the unprimed elements by

a =a"l + ca e = e" + ce

i =i" + Ci M = M"+ (M

w =w"+Ew fl ="+ f

where the quantities ca, Ee, Ei, EM, cw, 61, are periodic functions of the double

primed orbital elements.

Equations (2.4) are solved for the double-primed Delauney variables which

can then be expressed in terms of the original variables.

The results initially obtained by Brouwer were not valid at the critical incli-

nation of 630.4, and they were questionable when either the inclination or eccen-

tricity were near zero [Ref. 4]. 0. K. Smith devised a method for dealing with the

problem of zero inclination and eccentricity [Ref. 5], but Brouwer subsequently

challenged the validity of his method. Later, Lyddane [Ref. 6] was able to suc-

cessfully remove the restrictions on small values of eccentricity and inclination by

reformulating Brouwer's work in terms of an alternate set of variables.

Brouwer used the central force term as the first approximation for the po-

tential since there is no exact solution to the equations of motion of a satellite

7



under the influence of the more complex potential described by an oblate planet

having axial symmetry. Other authors have attempted to introduce a new poten-

tial which approximates the Earth's potential better than the central force term

alone and also leads to an exact solution. Most notable has been the work of

Sterne [Ref. 7] and Garfinkel [Ref. 8]. Sterne's potential function accounts for

most of the standard potential through the second harmonic and it leads to a

solution of canonical constants that are free of first order secular perturbations.

The remaining effects of the earth's oblateness and other forces are allowed for

in the perturbing Hamiltonian which causes the ix canonical constants of the

unperturbed solution to undergo variations with time. Sterne provided the inspi-

ration for Garfinkel's method which is essentially the same as Sterne's but more

developed. Garfinkel included the second and fourth harmonics and arrived at

a solution that is reducible to quadratures. Garfinkel's original solution was not

valid at the critical inclination, but in a later paper he removed the singularity

through a variation on his perturbation theory [Ref. 91.

While Garfinkel did his analysis in spherical coordinates, Vinti [Ref. 10],

derived a potential expressible in oblate spheroidal coordinates. In his original

analysis, Vinti introduced a potential function and associated coordinate system

that would lead to the separability of the Hamilton-Jacobi equations. In a subse-

quent work [Ref. 11], Vinti showed that the equations result in a solution reducible

to quadratures. The Vinti potential is an exact expression of the Earth's potential

through the second harmonic. The theory provides perturbed coordinates, not

perturbed elements. In his second order analysis [Ref. 12], Kozai criticized this

characteristic, and he chose not to use the Vinti potential since it would require

changing the definitions of the conventional orbital elements.

8



Morrison [Ref. 13] showed that the von Zeipel method is a particular case of

the method of averaging, and Liu [Ref. 14] used the latter technique to study the

combined effects of air drag and planet oblateness on a satellite orbit. The method

of averaging, unlike von Ziepel's method, does not require that transformations

be canoi *-al. The method of averaging has been used extensively in recent years

by Lorell and Liu (Ref. 15], McClain [Ref. 16], and Hoots [Ref. 17]. However, the

validity of the method has been challenged; most notably Taff [Ref. 18] doubts

its rigorous foundation. Arnold [Ref. 191 notes that the principle of averaging is a

vaguely formulated and rigorously untrue assertion, but he adds that sometimes

such assertions are fruitful mathematical sources. It should be also noted that

the solutions obtained in Liu's analysis [Ref. 14] are not valid for near circular

equatorial orbits nor at the critical inclination, while those obtained by Hoots are

valid only for small eccentricities (0 < e < .1), and they are invalid at inclinations

near 0' or the critical.

Hamiltonian mechanics has provided a rich source of literature in orbit the-

ory; however its practical applicability has been questioned in some textbooks.

Roy [Ref. 20] briefly outlines the use of the canonic equations, while Taff [Ref.

18p. 322] states that he does not see any additional practical applications provided.

Baker [Ref. 21] chooses not to represent the subject. A general criticism is that

the process of generating suitable transformations in the perturbation procedure

tends to make the coordinates and the momenta less distipguishable on physical

grounds and more difficult to relate to the set of natural coordinates which were

used to write down the initial set of differential equations. While the ultimate

form of the governing equations may be simple to solve, there remains the tedious

task of obtaining explicit results in terms of physically meaningful coordinates or

elements.

9



C. KOZAI'S METHOD

Prior to his work cited above, Kozai [Ref. 22] developed a method for find-

ing the perturbations on the orbital elements of a satellite considering only the

oblateness of the Earth. Kozai developed a disturbing function based on the

Earth's departure from a sphere, and he used a version of Lagrange's planetary

equations to formulate the solution. Kozai used the standard form for the Earth's

potential and included the harmonics J2, J13, and J4. Despite the use of the higher

harmonics, the theory is first order. Kozai expressed short-period terms in J2, the

secular in J 2,J 4, and J22, and the long period terms in J2 , - and !!A The analytic
J 2 ' J 2

expressions are developed using the standard orbital elements.

Kozai's work is cited here because, due to its simplicity, the method has be-

come very popular in many textbooks and handbooks on orbital mechanics. [Refs.

20, 23, 24]. However, Taff cites Kozai's method as an example of misapplication

of perturbation theory [Ref. 18p. 332]. Taff challenges the assumptions made by

Kozai in his analysis, and he points out that the method is invalid at the critical

inclination.

As was stated in Chapter I, a motivation for this current analysis was the

purpose of finding a perturbation method that would lead to universal solution. All

of the methods discussed thus far have particular problems at certain inclinations

or eccentricities. Some of the problem cases have been resolved by unique efforts

(These cases are discussed in Appendix C.); however, one should question the

underlying validity of any perturbation method that produces singularities. There

has been no satisfactory way found for avoiding the critical inclination singularity

in Kozai's method.

10



D. THE DIRECT METHODS

R. E. Roberson [Ref. 25] devised an approach for finding the qualitative

and approximate quantitative results concerning the behavior of a set of orbital

elements in the gravitational field of an oblate planet. The motion of a near

satellite around the planet is simply described to first order by introducing a frame

of reference which contains a mean orbital plane having a constant inclination.

Both the reference frame and the orbit plane rotate at a constant angular velocity.

With respect to this doubly moving reference frame, the motion of the satellite

differs from pure elliptic motions by only periodic perturbations.

King-Hele [Ref. 26] advanced the approach taken by Roberson. He intro-

duced a non-rotating reference frame with a orbit plane that continually rotates

at a non-constant rate about the Earth's axis. A relation is found between the

rotating orbit plane and the angular rate of travel of the satellite. The equations

of motion are written in position coordinates, but are subsequently rearranged

in terms of a modified set of orbital elements. The inclination of the rotating

reference plane is held strictly constant in the analysis. King-Hele formulated

the problem by employing a power series expansion in terms of the eccentricity;

therefore, the method is limited to small eccentricities. The final solution con-

tains an incomplete set of workable elements and hence the method gives mostly

a qualitative description of the satellite's behavior due to oblateness.

King-Hele's analysis was the inspiration for the work of Brenner and Latta

[Ref. 27j. They improved King-Hele's original analysis by abandoning the condi-

tion of constant orbit inclination and by retaining the eccentricity in closed form

expressions. Brenner and Latta limited their analysis to small eccentricity al-

though the method is not so restricted. They obtained an approximate first order

solution and demonstrated that the method is valid for higher order analysis.

11



An advantage of the direct method is that one may use ordinary perturbation

analysis (the Method of Strained Coordinates) to solve the equations of motion. In

addition the chosen set of orbital elements used throughout the analysis correspond

closely with the classical elements; therefore, physical interpretation is facilitated.

The disadvantage in using the method is shared by most all other procedures

that must use a perturbation scheme. The process requires the manipulation of

massive algebraic expressions. However, this drawback has been greatly reduced

by the introduction recently of large symbolic mathematics programs, such as

MACSYMA, that handle the bookkeeping.
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III. THE TWO-BODY PROBLEM

A. INTRODUCTION

The central problem of celestial mechanics is the two-body (or Kepler) prob-

lem. Simply stated, the problem is to solve for the motion of two particles inter-

acting through their mutual gravitation in an isolated space. A solution of the two

body problem often represents physical reality in an acceptable way. For instance,

the orbit of the Earth around the Sun may be treated, to a first approximation, as

a two-body problem because the influen, e of perturbing bodies, the Moon, Jupiter,

etc., are small compared with the Sun's gravitational attraction. Likewise, more

complex problems such as a spacecraft mission to Mars, a four body problem -

Earth, Sun, Mars, spacecraft, may be treated by breaking the flight into three

two-body problems. Such a technique is used in the patched conic method where

two-body solutions are literally patched together.

There are other more important reasons for studying the two-body probiem.

It is the only gravitational problem in dynamics, other than very specialized cases

in the three-body problem, for which there is a complete and general solution.

and it is possible to gain considerable insight into more general phenomena of

motion by a thorough study of the two-body problem. In fact, the most complete

theories of celestial motion use functions appearing in the solution of the two-

body (elliptic case) problem as elementary functions. The solution is central to

this present analysis because it will serve as a starting point for the generating of

analytical solutions that are valid to higher orders of accuracy. These solutionw.

called general perturbation theories, are the subject of Chaper VI.
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hLi this chapter, the equations for the two-body problem will be derived and

solved. The first step is to chose a coordinate system in which the laws of Newton

hold (an inertial coordinate system). In practice, the reference frame of the "fixed"

stars provides a very good approximation to an inertial reference frame. Next,

following the method of Nelson and Loft [Ref.28 pp.82-84] it will be shown that

the center of mass of two bodies in this coordinate system is also an inertial

reference point. Then the equations of motion will be derived and solved using

the polar angle 8 as the independent variable.

B. THE DIFFERENTIAL EQUATION

Figure 3.1 shows two mass centers at position r, and r2 . The o,-igin 0 is

defined to be an inertial reference point. The distance between the two mass

centers is r where

r = r 2 - rl.

Combining Newton's third law of motion and his law of universal gravitation gives

K

m1  6
r

M 2

r0

Figure 3.1: Two Body Problem
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the force equations for the two bodies:

d2r1  _ GmM 2 r (3.1)Ml dt 2  r (.1

d2r2  -GmIm 2 rM2 dt 2  rS (3.2)

where G is the universal gravitational constant.

Adding (3.1) and (3.2) ar.d integrating results in

dr1  dr 2
Ml m --- = constant. (3.3)

Now the center of mass of the system (barycenter) in Fig. 3.1 is defined as:

(Ml + m 2)ro = mir, + m 2r 2. (3.4)

By combining equations (3.3) and (3.4) the following result is obtained,

dr0 _ m1  dr1  m2  dr2dt - - + M = constant.
dt m, + m2 dt mI + m 2 dt

So the barycenter moves with constant velocity, and it too is an inertial reference

point. Subtracting (3.1) from (3.2) results in

d2r 2  d2r1 _ dr -G(m, + M 2 ) r (3.5)t2 - - - (3. I
dt2  dt2  dt2  r" ,

the solution of which gives the position of either body relative to the other. Now

choose the barycenter as the origin and define the position of m, and M 2 , respec-

tively, as

-M 2ro, = ri - rn -- r
m I -f- m 2

r 02 = r2 - rc, = r.

MI + M2
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Substitution of the above equations in (3.1) and (3.2) yield separate equations for

the motion of each body relative to the barycenter:

d2ro d2ro1  d2rol -Gm s

dt + dt2 - = dt2  - (n 1 + m2r) 1 ro,

(3.6)
d2ro d2 r0 2  d2 r0 2  -G m r

dt2  dit2  -dt 2  (inl +m 2)r2 r 02

Equation (3.5) and equations (3.6) are of identical form, differing only by a con-

stant, so that

d2r GM r

dt r =0 (3.7)

is the vector differential equation of motion for either of the two bodies. r is the

distance to the other body, or to the barycenter, according to the appropriate

choice of GM. For the problem of a satellite orbiting the earth, the mass of the

satellite can be neglected in comparison with the mass of the earth, therefore GM

is the product of the universal constant and the mass of the earth.

C. THE INTEGRATION OF THE TWO-BODY PROBLEM

There are no cross products involved in equation (3.7); therefore, all motion

must lie in the plane that contains r and !. The scalar components of acceleration

are

d O 2dr dO
+ d 0 (3.8)

d2r (dO)' 2 -GM (3.9)

dt2 r2(3.
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Writing (3.8) as ! (r"") = 0 and integrating yields

r2 d = h = constant (3.10)
dt

where h is the specific angular momentum.

Equation (3.10) is an exact integral of (3.8). It corresponds to Kepler's

empirical law of constant areal velocity which states that the area swept out by

the radius vector of a planet is uniform in time.

From (3.10), the independent variable may be changed from t to 0, e.g.,

d hd
dt r 2 dO

so (3.9) becomes

ld2r 2 (dr 2  1 GM d2  1 GMr2 ~ d)- +r -h2 d02 ( 1  r  h2

Since this equation is linear in the reciprocal of r, it may be written as

d u GM
dO2 h 2

which has the solution

GM
u= - +Acos(O - w) (3.11)

or reintroducing r, (3.11) becomes

h 2/GM

1 + (Ah 2 /GM) cos(O - w)

which may be written as the polar equation of a conic section

17



rP (3.12)
1 + e cos(O - W)

so that

p = h2/GM and e = Ah 2 /GM.

D. ELLIPTIC MOTION

Equation (3.12) is the equation of a conic with prime focus at 0. The conic

has a semi-latus rectum h/GM, an eccentricity e, and a semi-major axis a that

makes an angle f = 0 - w with the horizontal axis (Figure 3.2). The extreme

endpoints of the major axis of the orbit are referred to as apsides or apses. The

point nearest the prime focus is called perigee and is given by 0 = w. The point

farthest from the prime focus is given by 0 = w + 1800 and is called apogee. The

angle w, "argument of perigee", will be discussed later in this chapter.

The energy of the satellite in the orbit is conserved and is equal to

E = mo(v 2/2 - GM/r) = mC

Figure 3.2: The Elliptic Orbit
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where C is the total energy of the satellite, v2/2 the kinetic energy and -GM/r

the potential energy of the satellite, all per unit mass (m,). In general C is equal

to -GM/2a, so that the satellite's energy depends only on the semi-major axis.

From this relationship it is easily shown that the satellite's velocity is given by

V = GM(2/r - 1/a).

Then the relationships rp = a(1 - e) and r. = a(i + e) result in

2 GM(1 + e)P a(i - e)

and

2 GM(1 - e)
va a(1I + e)

so that the velocity is a maximum at perigee and a minimum at apogee.

The area of the ellipse is 7ra 2 (1 - e2), and the rate of description of area is
72 d6 = h Since h2 = GMa(1 - e2), the orbital period may be written as
2 dt -2

T ;- -a 3 /2

GM

By defining the mean motion n as T =!, so that n2a' = GM, one may proceed

to derive an expression for position versus time in the elliptic orbit.

The orbital ellipse APB with center at C touches at perigee, A, and at

apogee, B, a concentric circle also centered at C which has as a radius the semi-

major axis of the ellipse. The circle C is known as the auxiliary circle, and is

geometrically related to the ellipse by the relation

PA = P'N\(1 - e2 )
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where e is the eccentricity, P any point on the ellipse, N the foot of the perpendic-

ular through P upon AB, and P the intersection of this perpendicular with the

circle C. The angle ACP' = E is known as the eccentric anomaly (Figure 3.3).

Let r be the time of perigee passage and t the time, then t - r is the time

since perigee passage. The quantity,

M = n(t - r), (3.13)

is called the mean anomaly. Using the geometry of Figure 3.3, one may derive the

following relationship between the anomalies:

M = E - esin E, (3.14)

which is known as Kepler's equation. If the position of a satellite in a fixed orbit

relative to the earth is desired at some specified time t, then equation (3.13) gives

M and (3.14) gives E . The distance to the satellite is found by the relationship

r = a(l - ecos E).

The angular position of the satellite is defined by the true anomaly, 8 - w = f, or

the angular distance from perigee:

Figure 3.3: The Eccentric Anomaly
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I1+ e 1/2 £
tan (f/2) + e/ tan -.

'- e) 2

In actual practice, the second step in the above process, solving (3.14) is a bit

more involved since a closed form solution to Kepler's equation does not exist.

However, dozens of methods of successive approximations have been devised. For

instance, by use of a numerical method M can be calculated for a few values of E

and then the correct E can be found by inverse interpolation.

E. CONSTANTS OF THE MOTION

In section B, the original equations of motion (3.1) and (3.2) were reduced

to (3.7). Thus the problem was reduced from one of three second order differential

equations requiring twelve constants to one of three second order equations with six

constants. A discussion of the constants of motion, some of which were introduced

during the solution of the two-body equation, is the purpose of this section. The

six constants may be written in a variety of forms, a choice among forms is usually

made with the purpose of simplifying the problem.

Equation (3.7) was solved by the classic technique of changing the indepen-

dent variable from t to 0. But (3.7) in its present form is integrable; that is,

there exists sufficient time independent first integrals, or functions that are con-

stant along the motion, to specify each orbit. The first of these is the angular

momentum. Cross-multiplying (3.7) by r results in

d2r GM
rx-+rx r r=O

dt2  rs

or
d rrx- ---.
dt2
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And since
d( dr) dr dr cPrrx - =-x-+rx-

_dt T d t dt dt'

then
d
-(r x v) = 0.

By integration

rxv=h

where h, the angular momentum, provides three constants of motion. Similarly,

by cross-multiplying (3.7) by h, one may obtain the Lenz vector

dr h r de
e= - x - -=0dt GM r dt

where e is a vector along the major axis of the orbit pointing toward the position of

closest approach or perigee (lei = e). The vector e provides only two independent

constants since h and e are perpendicular vectors (h • e = 0), and one remaining

constant is required.

The vector integrals h and e specify that the orbit will lie in the plane per-

pendicular to h and have a shape determined by e. The classical orbital elements:

a (semi-major axis), e (eccentricity), i (inclination), 0l (longitude of the ascending

node), and w (argument of perigee), may be derived from these vectors.

From (3.12) the equation for r may be written as

h 2 /GM

1 + e cos f

where f is the angle between e and r (the true anomaly).

Restricting e to the elliptic case results in
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h2  h2

GM(1 + e) GM(1 - e)

so that the major axis of the ellipse is

2h 2

2a = ri + r2 = 2h
GM(I -e2

Knowing e and a gives the shape and size of the orbit. The orbit now can be

oriented in a coordinate system. Reference is made to Figure 3.4 and the two

angles i and 0. i is the inclination of the orbit plane defined as the angle between

the equatorial plane and the orbit plane. Since this is the same angle as the angle

between the z axis (k unit vector) and the angular momentum vector h, i may be

found by
hk

Cos I - -.h

k

h/
sate~lite's position

Figure 3.4: Constants of the Orbit
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The angle Cl, the longitude of the ascending node, is the angle in the equato-

rial plane, between the i unit vector and the point N where the satellite crosses

through the equatorial plane in a northerly direction measured counterclockwise

when viewed from the north side of the equatorial plane. The vector n lies along

NO such that

n=k x h.

Therefore fl may be found by
Cos 11 - ni

n

As was stated above, the vector e, points toward perigee. The angle W (the

argument of perigee) measures the distance between NO and perigee and can be

found by
n'e

Cos W= _
ne

With the constants a, e, i, fl, w specified, the orbit is defined in the coordinate

system. The remaining task, to locate the satellite in the orbit at any time,

requires one more constant.

The final constant of motion is given by the relationship between the mag-

nitude of the angular momentum and the true anomaly (f):

hdt = r2df.

By a change of variables from f to the eccentric anomaly E, the above equation

may be easily integrated. The result by this analytical method is identical to

equation (3.14), Kepler's equation, which was previously derived by geometry.

The constant r, time of perigee passage, is the final constant of integration.
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F. SUMMARY

This completes the analysis of the two-body problem. It has been shown that

a combination of six constants will strictly define the motion of a satellite under

the influence of a central gravitational force. The six that were chosen, referred

to now as the orbital elements, can be used to find other constants of the motion

including r and v, the distance and velocity vectors of the satellite.
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IV. SATELLITE PERTURBATIONS

A. INTRODUCTION

As was demonstrated in the last chapter, the classical two-body problem has

solutions that can be written in closed form when the polar angle (or the eccen-

tric or true anomaly) is used as the independent variable. If an additional force

acting on either of the two bodies is introduced, the resulting, equations of motion

usually no longer have closed-form solutions. When the magnitude of such a force

is small compared to the central gravity term, the force is called a perturbation.

The resulting orbit experiences a small departure from the Keplerian orbit, at

least initially. These departures are also called perturbations. Under certain cir-

cumstances, it is possible to make analytic approximations to the effects of the

perturbing forces, though a precise solution cannot be obtained. Generally, the

methods consist in determining the exact equations of motion and then assuming

that their solutions do not depart appreciably from the case of no disturbing force.

Then only an indication of the actual motion of the body can be obtained. Pre-

cise solutions can be found for specific initial conditions by numerical integration

techniques, but these solutions give little insight into the dependence of the mo-

tion on the parameters of the disturbing force. In some cases, the approximations

obtained with analytic methods may exceed the precision of numerical methods,

especially if the prediction is required for a long period of time and there is a clear

dominance of one particular force.
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In the case of a close satellite about a non-spherical planet, a puLential func-

tion V can be formed such that

V=Vo+R

where Vo is the potential function due to the two-body problem and R the dis-

turbing function that is at least an order of magnitude less than V0 . Many general

perturbation theories make use of the fact that the two-body orbit of the body due

to V0 changes slowly due to R, and they attempt to obtain analytical expressions

for the changes in the orbital elements due to R within a specified time interval.

If the elements of an elliptical orbit are ao, e0 , i0, fo, wo, and to, the ellipse with

these elements is referred to as the osculating elements at to. The velocity of the

disturbed satellite at this time in its osculating ellipse is equal to its velocity in

the actual orbit.

At a future time t1 , the elements will change due to the presence of R.

For instance, a0 will be changed to a,, and the quantities (a, - ao),(el - e0).

etc. are called perturbations in the elements. Corresponding to the perturbations

in the elements are perturbations in the coordinates and velocity components.

There are, however, at least two reasons for using orbital elements rather than

coordinates to describe the motion of the satellite. First, the elements do not

exhibit a variability of anomalistic motion that the coordinates do, therefore any

variation can be attributed directly to the perturbing forces. Second, the elements

give a clearer geometric picture than do the coordinates; hence the effect of the

perturbation on the orbit can be seen immediately.

There are various kinds of disturbances that an orbit can experience, the

severity of each is usually due to the altitude of the satellite. It is the purpose of
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this chapter to give a qualitative description of the most important disturbances,

and to relate the relative magnitudes of each.

B. THE EARTH'S GRAVITATIONAL FIELD

The two-body problem assumes that the earth is a sphere, while in reality the

earth is flattened somewhat at the poles and bulges correspondingly at the equator.

Such a shape is called an oblate spheroid. In the science of geodesy, it has been

useful to define a reference ellipsoid as a mathematical surface which is an idealized

approximation to the earth's actual surface. The study of satellite orbits has

established a flattening of the terrestrial ellipsoid as 1/298.24, which corresponds

to a difference between the equatorial and polar radii of 21.4 kilometers.

Another surface commonly used in geodesy is the geoid, which is the equipo-

tential surface that coincides on the average with mean sea level in the oceans. The

geoid is everywhere perpendicular to a plumb-line since gravity is always normal to

its surface. Before the advent of artificial satellites, it was generally accepted that

except for relatively small variations resulting from the presence of mountains or

deep valleys, the geoid could be regarded as approximatel,' an ellipsoid. Now, the

surface of constant gravitation can be more accurately portrayed by representing

the potential as a series of quantities known as spherical harmonics, each of which

makes a contribution, positive, negative, or zero, to the total. The contribution

of any harmonic is determined by a factor, usually represented by the symbol J

and commonly referred to as the value of that harmonic. These J values for a

planet's gravitational field can be determined from observations of a satellite orbit

and they can be related to the shape of the geoid.

A large number of harmonics may be required to precisely represent a planet's

gravitational field, but in practice the higher harmonics make such a small contribution
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that they can be neglected, at least to a first approximation. The zonal harmonic

J0 expresses the overall size of the geoid, while J1, the first degree harmonic de-

termines the center point of the geoid in the north-south direction. The other

harmonics represent deviations from the spherical shape as shown by Figure 4.1.

It is seen that the contributions from the even harmonics are symmetrical about

the equator, while the odd harmonics corresponds to contributions that are asym-

metrical. The degree of the harmonic gives the -.umber of undulations in the shape

of the surface.

J , J J

Figure 4.1: Qualitative Representation Of The Harmonics Of The Geoid

The results given thus far consider only the zonal harmonics, which are in-

dependent of longitude. The tesseral harmonics give east-west deviations from

symmetry. Satellite observations of the tesseral harmonics have led to the con-

clusion that the equator of the earth's geoid is slightly elliptical, the difference

between the longest and shortest axes being about 400 meters.

The following tables from Kozai [Ref. 29] gives representative values for the

coefficients of the earth's zonal and tesseral harmonics.
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TABLE 4.1: ZONAL HARMONICS

n J,,x 106  n J. x 10 6

2 1082.48 ± .04 6 .39 4 .09
3 -2.57 ± .01 7 -. 47 - .02
4 -1.84 ± .09 8 -. 02 - .07
5 -. 06 ± .02 9 .11 - .03

TABLE 4.2: TESSERAL HARMONICS

n m J x 106

2 2 2.32 ± .30 -370.5 50.6
3 1 3.95 ± .36 220.0 - 110.0
3 2 .41 ± .36 310.0 ± 140.0
3 3 1.91 ± .29 510.3 ± 20.9
4 1 2.64 ± .44 1630.5 ± 60.5
4 2 .17 ± .06 540.0 ± 110.0
4 3 .05 ± .04 -130.0 ± 190.0

C. ATMOSPHERIC DRAG

Atmospheric drag is the most complex and the most difficult of the artificial

satellite perturbations. The complexity arises from the fact that an exact force

law is not known and the atmosphere is variable. This variability results from

the fact that the atmosphere is not spherically symmetric and that lunisolar tides,

diurnal heating, strength of the solar wind, etc., all effect atmospheric density.

In addition, the atmosphere is moving with the rotating earth. Therefore this

perturbation is difficult to model analytically or numerically.

For most Earth satellites, atmospheric drag removes the satellite's energy,

thereby causing it to drop in altitude and thus increase its speed. The increased

speed and the lower altitude increases the drag force with the result that the

satellite spirals into Earth.
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Satellite drag is measured along the same direction as the velocity vector of

the satellite. The formula used is

-1
FD = -CDA pv - v.l(v. - v)

2

where v is the satellite's inertial velocity, v. is the inertial velocity of the atmo-

sphere, p is the atmospheric density, A is the effective cross-sectional area of the

satellite, and CD is the drag coefficient, CD ; 2.

D. SOLAR RADIATION PRESSURE

In contrast to drag which is a tangential force, solar radiation pressure is

radial. By solar radiation on a satellite is meant the net acceleration resulting

from the interaction (i.e., absorption, reflection, or diffusion) of the sunlight with

the surface of the satellite. In general, the illumination of a low altitude satellite

orbit will be non-uniform due to the Earth's shadow, albedo, and atmospheric

absorption. The magnitude of the solar radiation pressure is given by

AP
4 7rmcD

where A is the effective cross-sectional area of the satellite, P is the total radiated

solar power, m is the satellite's mass, c is the speed of light, and D is the satellite-

Sun distance.

It can be seen that the perturbing effect of solar radiation particularly effects

satellites with a large area to mass ratio. Such was the case of the satellite Echo I,

which when inflated was a sphere with a total exposed area of about 31,000 square

feet and weighed only 135 pounds. Its initial orbit was approximately circular with

an altitude of 1000 miles, but the pressure of solar radiation brought down the

perigee to 600 miles at times.
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A. OTHER PERTURBING FORCES

Gravitational perturbations due to other celestial bodies (the Moon, the Sun,

and the planets) are caused by the differences between the force on the Earth and

that on the satellite or the "tidal" force. Perturbing forces from the Sun and Moon

become significant as the altitude of the satellite increases. Planetary perturba-

tions are very small, with Venus and Jupiter providing the largest contributions.

Since classical mechanics is used in this analysis, relativistic corrections may

be regarded as a small perturbation to the motion. Other minor perturbing forces

include atmospheric lift and electromagnetic forces.

The following table from Milani [Ref 30] gives the magnitudes of various

perturbations on three different satellites:

TABLE 4.3: ACCELERATIONS ON SPACECRAFT AT VARIOUS
ALTITUDES (cm/seC2)

Geosynchronous LAGEOS SEASAT
satellite

a = 42,160 KM 12,270 7,100
Cause A/M = .1 cm2/g .007 .2

Earth's 2.2 x 101 2.8 x 102 7.9 x 10'
monopole
Earth's 7.4 x 10 - 4  1.0 x 10- ' 9.3 x 10- 1

oblateness
Higher 4.5 x 10-1 °  8.8 X 10- 6 7.0 x 10- 4

harmonics
Moon 7.3 x 10 2.1 x 10- 4  1.3 x 10 -

Sun 3.3 x 10- 4  9.6 x 10 s 5.6 x 10- '
Venus 4.3 x 10- 8 1.3 x 10-8 7.3 x 10- 9

General 2.3 x 10- 9  9.3 x 10- ' 4.9 x 10- '
Relativity
Air Drag 0 (?) 3.0 x 101 2.0 x I0 - 5
So'ar 4.6 x 10- 6 3.2 x I0 - 7 9.2 x 10 - 6

Radiation
Earth's 4.2 x 10- ' 3.4 x 10- ' 3.0 x 10- c
albedo
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V. DEVELOPMENT OF THE EQUATIONS OF
MOTION

A. PRELIMINARIES

1. Overview

In this chapter, the groundwork will be laid for solving the equations of

motion for a satellite about an oblate planet. To begin, a discussion of the assump-

tions made in the analysis will be given. Second, the special coordinate system,

which was introduced by King-Hele [Ref. 26] and refined by Brenner and Latta

[Ref. 27] will be developed, followed by a derivation of the relationships among

the astronomical angles of the coordinate system and the angles of a spherical

coordinate system. Next, an expansion for the potential of a planet modeled as

an oblate spheroid will be derived. Finally, the equations will be transformed so

that they can be solved by an ordinary perturbation method.

2. Assumptions and Limitations

The basis for the assumptions made in this analysis is the requirement

that a solution to the equations of motion for a satellite orbiting a planet be

accurate to within a relative error < 106. Therefore, all perturbative forces

that are of magnitude 10-6 or smaller compared to 1 may be neglected. This

requirement then allows one to model the earth as an oblate spheroid with an

axially symmetric gravitational potential. This is to say that all zonal harmonics

except th, second in the expanded potential may be neglected. In addition, all

coefficients of the tesseral harmonics are small enough to neglect.
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The assumption of an axially symmetric potential is a reasonable as-

sumption if the earth is used as an example of an oblate planet. As was suggested

in Chapter IW, if one normalizes the expanded geopotential of the earth such that

the contribution from the central force (1/r2) is 1, then the contribution from the

zonal harmonic for the oblateness contribution is = 10-3, and all other harmonics

(zonal and tesseral) are < 10 - 6.

The gravitational effects of the Sun and Moon are also neglected. This

asrnpt lon will rem'in valid oilt tn a distan- of a+ least 6,000 kilometers abr,

the Earth, where the oblateness perturbation is still about 1000 times larger than

the attraction of the Sun. However, at altitudes near geosynchronous (35,800 kin)

the perturbative forces of the Sun and Moon are nearly equal to that of oblateness,

and therefore would have to be considered.

The most important limitation to the analysis is the neglect of atmo-

spheric drag. For high altitude satellites with small eccentricity, the neglect of air

drag is unimportant; however, for very low altitude satellites the effect of air drag

would begin to dominate the oblateness force after a number of revolutions. Also.

high altitude satellites with highly eccentric orbits would be greatly affected by

drag as they pass through perigee. For these particular cases, the desired accuracy

for 1000 revolutions would not be achievable: however, in many cases the solution

could be accurate for a few orbits. As was discussed in Chapter I', air drag re-

mains the most difficult perturbation to model. Since an accurate geopotential

model allows for a better determination of fluctuations in drag of the atmosphere

through which the satellite is moving, the analysis conducted here is valuable even

when air drag becomes the dominating factor.

Also neglected in this analysis, are the remaining perturbative effects

mentioned in Chapter IV. Solar radiation pressure. the Earth's albedo radiation
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pressure, and the general relativistic correction to Newton's law of gravity are all

neglected since their relative contributions are small.

The final limitation to the analysis is the assumption that the differential

equations which describe the motion of the satellite have a solution asymptotic to

the form specified in the analysis. As long as the true solution does not depart

from the form specified, the analysis is valid.

3. Order of Magnitudes

T),-,ughout this analysis, reference will )e madr fo the ,elative mag-

nitudes of the perturbing forces; hence it is important to establish a convention

for orders of magnitudes. The approach established by King-Hele [Ref 26] will be

followed here with the exception that a small eccentricity is not assumed. Here,

J - J2 , the coefficient of the second zonal harmonic in the potential is used as the

basic small unit. Mathematically,

f(J,9) = O(JO-)

means that there exists for all

0< J< 10- 3 and 0 < 0< (2<)10 3

a K independent of J and 0 such that

If < KJO'

The following terms are defined:

Zero order = 0(1) - 1.0

First order = 0(J),0(J 20),0(J 302 ),... 10- 3

Second order = O(J 2 ),0(J30),o(J4I0),... 10- 6
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B. THE COORDINATE SYSTEM

Figure 5.1 is an inertial reference system of spherical coordinates with the

prime direction pointing toward the vernal equinox at epoch 1900.0. The equato-

rial plane, latitude (6), and longitude ( -), . shown in the figure have their usual

meanings.

S

r

reference plane

S
equatorial plane P,

Figure 5.1: The Reference System

As was demonstrated in Chapter III, the path of a satellite of a strictly spherical

planet lies entirely in a fixed plane, and the motion of the satellite is described by

the solution to the two-body problem. With the angular momentum vector fixed

in space, the intersection of the orbit plane and the equatorial plane describe the

fixed angle A measured from the prime direction to the intersection (or node).

The longitude of the ascending node (fl), the inclination (i), and the argument of

perigee (w). fix the orbit plane in the coordinate system.
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The effect of the oblateness perturbation is, in general, to move the satellite

out of the original two-body orbital plane. One specific effect is to rotate the

orbit plane about the planet in the opposite direction to the satellite's motion.

The physics of this motion is easily demonstrated in Figure 5.2. Oblateness is

represented by an additional mass about the equator of the planet. The radius

vector r and the satellite S lie in a plane which is named here the "reference

plane". If there were no equatorial bulge, the direction of the gravitational force

would coincide with the rw,,iq vectcr anrd the a,;ular momentum vector would

remain in a constant direction normal to the plane. The equatorial bulge; however,

adds a component of force that does not lie along r. This additional force adds a

torque r = r x F. The direction of r is into the paper at S for a prograde orbit.

Therefore as the satellite orbits, the angular momentum vector rotates about the

Z axis. The reference plane also rotates, and the rotation is measured by the

change in f).

Polar
axis

h Orbit S

F
r

A Equatorial

S I

Figure 5.2: Rotation of the Reference Plane

The line NON' in Figure 5.1 is referred to as the "line of nodes", and the

ascending node describes the point where the satellite enters the northern hemi-
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sphere. For the two-body problem with a non-rotating plane, the line of nodes is

a fixed reference line. Now, for the rotating plane, when the satellite is actually

at a node, the line of nodes passes through the satellite, but at other times the

definition "line of nodes" is an arbitrary one, and the angle f) is simply given as

a function of time.

Another motion of the reference plane that is a result of the oblateness

perturbation is an in-plane rotation called precession. As was demonstrated in

Chapter III, a particle executing bounded, non-circular motion in a central force

field will always have a radial distance from the force center that is bounded by

r,..z < r rmi,,. That is, r is bounded by the apsidal distance. Such an orbit is

called a closed orbit and it is characterized by the fact that all apsidal angles are

equal. For instance, the apsidal angle is 7r for elliptic motion. But if the radial

dependence deviates slightly from 1/r2, then the apsides will precess or rotate

slowly in the plane of motion (Figure 5.3). This motion is analogous to the slow

rotation of elliptic motion of a two dimensional harmonic oscillator whose natural

frequencies for each dimension are almost equal. The rotation of the line of apsides

is also known as the precession of perigee since the value for 0 for which r is a

minimum varies in time as the apsides rotate.

Figure 5.3: Rotation of the Line of Apsides
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For a satellite orbiting an oblate planet the rotation of the line of apsides is

opposite the direction of satellite motion for inclinations less than sin - ' /5 and

in the same direction as the satellite for inclinations greater than sin - ' f/5. If

the inclination is exactly sin - ' 4 then there is no rotation of the line of apsides,

and perigee remains constant. This inclination is known in Astrodynamics as the

"critical inclination". A detailed discussion of the critical inclination is contained

in Appendix C.

A final motion of the reference plane caused by the oblateness perturbation

is the periodic variation of the inclination about the initial inclination i0 .

C. ANGLE RELATIONS

As a preliminary to deriving the equations of motion, it is necessary that

the relationships among the spherical coordinates and the angles describing the

reference plane be established.

Reference is made to Figure 5.4, where i, ij, and j' define the equatorial

plane. Let a, b, and c denote three unit vectors, where b and c are in the reference

plane. c points to the initial point 0 = 7r/2 in the reference plane where 8 is

measured from the line of nodes. b points to the position of the satellite, S. a is

perpendicular to the reference plane and therefore points in the same direction as

the angular momentum vector h. a and c are both perpendicular to the line of

nodes. Then

b = cos 0 cosb i + sin o cos 6j + sin 6k.

Now measure b from the line of nodes.

b = cos(6 - [2) cos 3i' + sin(O - 0) cos bj' + sin bk.
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a and c are therefore

a = -siniJ'+cosik

c = cosiJ'+sinik.

Portion of the Reference PloneS/

I S

h a £

-lines of Nodes

Figure 5.4: Angle Relations

Since a and b are perpendicular, a . b = 0, therefore

tan b = tani sin(4 - fl). (5.1)

Continuing

b .c = IbI Icl cos(O- r/2)

results in

sin(k- fl) cos6 cosi+ sinS sini = sinO.
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And using the relation from equation (5.1) results in

sin b = sine sin i. (5.2)

Finally, from c x b, the following relationship is obtained

cos 6 = cos 0 sec: ( - 0). (5.3)

(5.1), (5.2), and (5.3) are the required angle relations.

D. THE POTENTIAL

In Chapter III, a simplified gravitational potential GM/r was used with the

assumption that the attracting body was spherically symmetric. This simplified

potential caused the satellite to move in conic orbits. As has been stated, the

planets are not spherically symmetric but are bulged at the equator, flattened at

the poles, and are generally asymmetric. An expanded expression for the gravi-

tational potential will be developed in this section. The final expression for the

potential is subject to the assumption made in Section B of this chapter that the

planet about which the satellite revolves is approximately an oblate spheroid.

Now, regardless of the nature of an attracting body, the potential V must

satisfy one of the following differential equations. For regions within the attracting

matter

V 2V = 47rpG where p is the density (5.4)

which is Poisson's equation.

For regions outside attracting matter

- 0 (5.5)

which is Laplace's equation.
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This discussion will be restricted to Laplace's equation which, if V is written

as a function of the spherical coordinates (r, 0, 4), may be written as

S + o6 a (cos I=)2  Vo. (5.6)

Any conservative force field F can be written as the gradient of a potential.

Equations (5.5) and (5.6) state that div (grad V) is zero. The assumption that F

is rotationally symmetric means that aV/a is zero. Therefore a solution of (5.6)

is sought that is a product of a function of r alone and a function of 6 alone:

V(r, 6) = f,(r) . f2(b).

By multiplying (5.6) by r2, dividing by f 1 (r)f 2(6), and rearranging terms, the

following result is obtained.

I 1 (r (dl Co df2'

f, dr r - - f2 cos66 l dcos6 .

Since the left side is a function of r alone and the right side is a function of b

alone, both members are equal to a constant, say n(n + 1). fi must satisfy

d ( 2dfl'\ =n(n l)fl

dr (dr)

which has the solution

fr, = Ar - - 1 + Br' .

It is desired that this function be zero at r = oo, and that it be analytic and

single-valued there. Therefore n is chosen to be an integer greater than zero, and

B most equal zero. Therefore

h = Ar - 1-

The equation for f2 is

d cos6 ) +n(n + 1)cosf 2 = 0
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which may be rewritten as

d (1-sin'6) df 2  +n(n+l)f2 =0. (5.7)
dsinb I d sinb6

This is known as Legendre's equation. Using the method of Frobenius, a series

solution to Legrendre's equation is found to be

f2 = CP (sin 6).

Therefore the solution to (5.6) may finally be written as

V(r,6) = Ar -n-P.(sin6)

where C is chosen as 1.

There are many ways to consider the polynomials P,. Rodrique's formula for

P(sin 6) is

P,,(sin b) = I d1 s ) (sin  - 1)".
2 nn! d(sin b)n~sn

so that

Po 1, P1 = sinS6, P2  (3sin 26 - 1), etc.
2

The general solution of (5.6) is then written as

V (,,b) = ,Ar-n-1 P,,(sinb ). (5.8)

n=O

The above mathematical derivation of an expression for the potential may

be enhanced by a more physical formulation. Referring to Figure 5.5, let a unit

mass m be placed at a point P which is a distance r from the center of mass of

a bounded distribution of total mass M. Let dm be an element of the mass at a

distance I from 0. Then the potential at P due to dm is

dV -Kdm
(J, + r2 - 2ri cos 0) 1/2
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and the total potential is

V= -Kf dm 59dmV=K2fm(V + r2 - 2rt cos 9) 1/2" (5.9)

(P

0 r

Figure 5.5: Potential at an Exterior Point Due to an Irregular Mass

The denominator of the right side of (5.9) may be expanded such that

2+ r2- 2rlcosa) 11 2 
- () P(sin b)(12+ - 2lcsS)I/ =r n=1

where 6 = ir/2 - 8.

Therefore the following may be written

v - 7JM 72JfM273fMV - K- dmn -- K tsin 6dm + Kr t2dmn

-3K 2 f t 2 s in 2 6 dmn+.3 2
1

A description of the physical significance of each of the above integrals can be

made. The first integral is the total mass, the second is the first moment about

an axis through 0 perpendicular to OP and is zero when the origin is chosen as

the center of mass. The third integral is the moment of inertia about the origin,

and the last integral may be written as

IM(2 _ t2 cos
2')dm = Io - I

where 10 is the moment of inertia about the origin and I is the moment of inertia

about the line OP.
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The potential is then

v r 2r s1 3)

Now the first term is the potential due to a homogeneous solid sphere. The second

term arises from the departure of the mass M from spherical shape.

With the physical description established, (5.8) may be written as

VI= -GM 1+ -sin 6) +... (5.10)
'r I r' 2  2

Note that only P0 and P2 remain.

An advantage of (5.10) is that it can immediately be written down once axial

symmetry has been assumed, and any suitable experiment (such as an orbit of a

satellite about the Earth) can be used to determine J2 (or J3 , -4, etc.; for general

potential).

E. THE EQUATIONS OF MOTION

Referring again to Figure 5.1, the components of the velocity of a satellite in

the coordinate system are:

V = V- + V0 + V6

or
dr dc dbV= -+rcosb-+ r-7.
dt dt dt

An expression for the kinetic energy (T) is

(dr ' (b) 2 2 2 (5.dO 22Tt= 
dt +r dt + 

(5.!t

The equations of motion may be written using Lagrange's equation
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d a(T - V) a(T - V)dt a ( ) 0 q = r, 6, or (5.12)
dt dq tOq

where 4 = , T is the kinetic energy and V is the potential energy.

Applying (5.12) to the expression for T (5.11) and V (5.10) results in

d 2r (d6 )2 (LO) s 2 V .3(t-)- r T- rcos6( d t ) (5.13)

d r2- ) +r2 sin 6 cos6 v (5.14)

r2 Cosd2  0 (5.15)

The last of these equations gives an integral which can be used to eliminate

time from the system, i.e.,

r2 cos2  Cos i=.

Let r = p/u then
d h cos iou2 sec23 d

dt =- (5.16)

Starting with equation (5.14) and applying (5.16) to the first term results in

d ( 2 d6) d (r 2 h cos 2 iosec2 6\ d6

dt dt dt P2 d'

and continuing to apply (5.16) so that (5.14) finally becomes

d2 t' rt 6 +V r 2 cos2 6

+ tan 6=~-do 2  0 h2 cos 2 io

or

d2 tan 6 sina6 bosin+baos=s (2Ju) (5.17)
d0 2  cos 2 i*0
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where

p = I2/GM.

It is desired to get the left side of (5.17) in terms of the independent variable

e. To begin, the right side of the angle relationship (5.1),

tan 6 = tan i sin(O - (1),

is substituted into (5.17).

Then using (5.3)

cos 6 = cos 0 sec( - f),

(5.17) becomes

tan 6 [scos , t

-2sec2  tan b u 2
- tn "~2

sin 6 cos 3  
(5.18

cos i0  (2J ),

where primes denote differentiation with respect to 6.

Later, 4 will be eliminated from (5.18), but first the remaining equation of

motion (5.13) will be rewritten in a form like (5.18).

To rewrite equation (5.13) in a useful form, the independent variable is again

changed by use of (5.16). Multiplying the expression by (0')2 and noting that

(tan' 6)'= 2 tan 6 sec'6 d b

dO
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results in:

[ O (tan .)_ u'(tan2 6)' u1'4"
u" + U 1Cos'b + (sec46) + sec 2 b

_ 1 cos'6 19V

h2u2  ar
Evaluating a and multiplying (5.19) by 2 () results in:

u"+u C= -- [1l+ Ju2 (1- 3 sin26)] + u" 1 ( 1-)n

U1 cos2 i SeCI 6[ "
s 2 sin 6 cos 6(tan 6)'-

[5 226 (tan 6)12 cos2 i (5.20)

Sucosec

5 + 42

Equations (5.18) and (5.20) are the equations of motion. Before proceeding

to solve these equations, it is necessary to remove 0. Combining equations (5.1) -

(5.3) results in the following expression:

tan(O - 11) = cos i tan 0.

Differentiating this expression with respect to 0 results in

cos I ± ' sin 0 cos 0 sin (2€'= + 11' -(5.21)
cos 2 6 cos 2 6

or

1 _cos
2 6 1- O2 + 1l o2 _ i (5.22)

0' co-i- 1 + 0I2"2 I"sin 0 cos 0 tan (2

From (5.2), sin2 6 (sin 0 sin i*2 or

cos t6 1 - (sin 0 sin i)2 .
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Substitution of this expression plus (5.21) and (5.22) in (5.18) and (5.20)

results in completely general equations of motion in terms of the dependent vari-

ables: i, 0, y; and the independent variable 0.

6sini()sin 3  sin 2cos 0 sin2 0
do____ do W

cost cosi

3 3sin cd s d sin 0  6sinSi(o)2cos2 sin6
3 sin2 : -/ cos 6sn

+ +df ie 2icos i cos i
3 i 2i2i anQ C2 O sin 0 2 sin 2 i4 d sin 0

+ d 8+ a0
Cos I Cosi
*dz d2 0 ________

+ 3cos idi d 2 sin 0 - gin-
dO dO2  cos t

/2

+ 3 sin 3 ( 2 sin + 6 cos isin i d,--)2 sin 0

3sin i _ sin 0 sin 2 t d --nsin 0cosd8 dO 1

+
cos cos i

d 2i df? d2i dO sin0 .dQ
+ 3 cos d- -- sin 0 os. - 2 sin i- sin 0

d6 c Cos tdo

d 2i 6 sin i 2 sin 0 3 sin3 - d-cos3

dO2 cos I cos t

12 sin 2 iL cos2 0 .d d2fn
+ d6 dF -3 cos i sin i - cos 0

cos I dO dO2

d2n 2 sin 2 i ! cos 0
+ sin t-- cos0 + -

dO2  cos i

di dfl 8AL cos 0 di
+ 12 cos i - coo d i 2d--cos 0

dO dO Cos I do

2 cos3 IsinJusin (5.23)

cos 2 I

and equation (5.20) is:
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d2ts 3 sini ()2 di sin 2(20)
d02 4 cos 2 i

3 sin d d 2 ' in sin (26)
cOs2 i

sin iA in 2 us in 2 sin(20)
2 cos2 i

2 sin3 didLd 6 sin 0 sin(20)

sin 2 i cos 2 6 O sin 0 sin(2x) sin 2 i (A) 2 A-COS 2 0sin (2x)
d6 s~ + cOs a

sin tj uco 4sn09 U O2t 2 i(
sin O~~sn2)sin0 3 ~sin(29)!

sin~ ijL )L~ sn 2 0)fl sin 4 L L in1 (20)
COS 2  2 cos 2 i

3sn1 dusin 4 3 sin -dQ d
2

Q du 4

V os2 i o 2 s i

2 dsndOLiid!u csi 4 0 i d id i
dddP IowwT

c5 2 iCS

26sin 3 i L LQ' dco COSsin 3 O0
d6 dF d

cos2 I

sin I dPd. 7os 9 sin

cOs2 ti

2 sin'i4- (d.) ~cos 9 sin 3

cos2 t'

2 in3 td (!Ldu CO 9 sin 3

cos 2 I'

9~~1 sii3n2 9d d 0sn

sin 5116 TdF2dT COS sin sin uw, csin
cos11 cos2 t*
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6 sin2i()0sin' 2 in2 'i sin2

cos 2 i cos i

~. 2 i ILd 
2 1 Ldu 20 2 * 2

0 4u 26 sin sin 0 sin i.d- - sin 0

cos2 i cos i
sidn dO dsin 2O 2 di dfldu2sin Slft - sin 2

+ osi + -o~

os id cos =
S di df] du - 2 diusin 2 n

di dO dO dO cos i
di d2 i duSi2 sin a$- To sinO
dO dO2 dO Cos i

3 cos2i sin 2 iJu 2 sin 2 O di 2
- -u sin20

cos2io dO
S d 2 idfldu

sin 2--ucos'sin 0+ dO d8

COS
2

oi

8 sin i ( ) ' d cos3 sin idin 2 d OSsin 0 2 cos 0 sinO

cd9) d icos 2 i
2di ) 2 du4fu 4os ssin
6sin - cos3d 0 sin 0 + d6d

c~
dOJ dO cos2 i

2 s in fd tL L--L Cos 9 sin 0

d6 d62 du

2 d du6 sin cos O sin 0

COS
2  i)

± 2 i d O

i d cos d sin 0
dS

2 
i

sin d2 d duos sin 0
dOl dO dOos
2  dn du  212 O sint Cos 0 sin 0 sin d- 7Cos 0 sin 0

Cos I Cos t

2 sini 1 )2dCoO0sin 0 di du
d6 76 --) Ocos 0 sin 0

di dnZ 2 sin iAu cos 0 sin 0
-=4 sin t - -u cos O sin 0-- &

dO dOCos I
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sin i_ cos4 0 3 sin 4 i d
+ di__ __ uf d8

COB2 i COB2

cos 2 i + cos2  osin i - -cos' 0 6 sin i !-4, co-
+ d8+ f fd

cos 2 t' cos 2 j

di df] du Cos2 0  3 sin "-cos2+ 3sin- - ddUdOd TO cos i

3.2 (dl\ 2 sin-ii!u cos2 0 3 ( -- ~2- c ± 2 d92sn 2 do cosi cos2 i

2 du dfl d2 fl du d2 n du

+ dO d82  3d- d$2 d + d$2 de
cos i cos2 i cos i

2 sin id .du *di dfl du sin itdu
sn d d sin -- +
cosi dO dO dO cos I

cos 2 iJ U2  Cos 2 i
+ C + c :i (5.24)

Equations (5.23) and (5.24) can be greatly simplified if only a first order

approximation to the equations of motion is desired. The approximate equations

to (5.23) and (5.24) are respectively:

d d~i .d~f2 di
-2 sin i-sin 0 - d--isin 0 +sinid -cos 0- 2-cos 0dO d62  d62  dO

2 cos3 i sin iJu sin 0 (52)

COS 2 io

d 2 U sin jL, sin(20)
dO2  cos t

2 d n d 2 Ua 2 0" d 2 A] dt , 2 0isin td6ld2 sin20 sin2 dd sin2 0 sin dt*A9 sin2 0

cos i cos2 i cos i

3 cos 2 sin 2iJu2 sin2 0 2 sini2 dI du 0 sin 0

cos 2 i cos Io

s in it*! cos 0 sin 0 2 sin iAu cos 0 sin 0

cos I cosI
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3 sin i0 L cose 0 2 sin 2 ifu cos, a+cos i cos

2 d 2 u  d 2  du sini -_u COSS ijU
+ .+ d0$+ W29+cos I cos i cos 1 cos2 i0

+ cOS2 i (5.26)

Equations (5.25) and (5.26) will be used in the initial analysis; the general

cquations will be used for second order calculations.

F. THE INITIAL CONDITIONS

It is desired that the solution to the equations derived in the last section

be an accurate, long term predictor of the satellite's motion. In fact, as long as

the oblateness perturbation remains the dominant disturbing force, the solution

should be valid for close to 1000 revolutions. However, before the solution can be

used for prediction, a set of initial conditions must be determined.

The subject of orbit determination represents a separate discipline within

celestial mechanics, and a discussion of the various techniques used to determine

an orbit is outside the scope of this analysis. It is sufficient therefore, to state that

the purpose of orbit determination is to find the orbital elements of a satellite from

reduced observational data. A set of observations will determine the osculating

elements at time to. As was noted in Chapter 4, these elements will change, and

at t, a new set of osculating elements may be calculated. For the purpose of this

analysis any observed set may be designated as the osculating elements at to and

thus prescribe the initial conditions. Stated r-athematically, the initial conditions

are at t = to:

- a(1 - e') dr a(1 - C2)e sin(Oo - L)

r 1 ecos(0o- W) dO (1+ecos(Oo- W)2
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where a = ao, C = co, w = wo,

and i= io )=0 o0 (5.27)
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VI. THE PERTURBATION PROCEDURE

A. PRELIMINARIES

The perturbation method used in this analysis is a variation of tne technique

known as the Method of Strained Coordinates. The motivation for the use of this

technique is the subject of this section.

In perturbation theory, the quantities to be expanded can be functions of one

or more variables besides the perturbation coordinate. An asymptotic expansion

of f(0; J) in terms of the asymptotic sequence C, (J) is,

f(8;J) .- Z a.(0)E,(J) as J --- 0 (6.1)
m=O

where 0 is a scalar (or vector) variable independent of J and the coefficients am

are functions of 0 only. This expansion is said to be uniformly valid if,

n-1

f( oi J) Z am(O)E,(J) + Rnde; J)
m=O

R,n(O;J) = O(f,(J)).

For these uniformity conditions to hold, am(O)Em(J) must be small compared to the

preceding term am-,(0)cm-I(J) for each m. Each term must be a small correction

to the preceding term regardiess of the value of 0.

Unfortunately, it is the rule rather than the exception that expansions like

(6.1) are non-uniformly valid and break down in certain cases. A case of particular

interest is the presence of secular terms such as on cos 9 and 0' sin 0 which make

f,,.(O)'/fmi(0) unbounded as 9 approaches infinity.

To illustrate how secular terms arise in the solutions to differential equations,

reference is made to one of the equations of motion derived in the preceding
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chapter. Equation (5.26) has the form,

Ul + U = 1 + J f(u, U'," U", fl',TZ").

When expanded, the right side will be linear combinations of trigonometric terms

and constants. The presence of terms of the form cos(B), sin(B), cos(3y - 20),

sin(2y - 0), etc., on the right side will produce secular terms. For example, the

second order differential equation,

u" + u =cos 0

has the solution,

U sin e + cos 02= +Klsin A+ K 2 os6.
2

Note that the presence of the term 0 sin 0 will result in unbounded solutions for

u as 0 approaches infinity. Since in this representation u is the reciprocal of

the distance from the center of the planet to the satellite, the physical effect of

the secular terms would be to produce in r periodic terms with large amplitude

variations, a situation that certainly does not correspond to physical reality.

A technique for dealing with terms that produce secular terms is to eliminate

them from the right side of the differential equation. The Method of Strained

Coordinates is a perturbation technique designed for removing secular terms. To

illustrate, it is recalled that the solution to the two body problem is

1/r = u = l+ecos(O-w), where p= 1.

In the Method of Strained Coordinates, the 0 coordinate is strained by introducing

a new variable y f (0) =0 - w + Jy1 0 + ... As will be shown in the next section,

choosing the correct value for Yi will insure secular terms do not arise in the first

order solution for u.
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While the above method removes secular terms to first order, it is not ade-

quate for dealing with secular terms that arise to second order in the equations of

motion. That it is important to remove second order secular terms is shown by

the following equation:

j'(r) = 1+ecos(O-w)+J(cosO+...)

+ J2 (8cos(O-w)+...)+J(O 2 cos(O-)+...)+...

Note that, although the terms through order J are bounded, as 0 -* oo, the J2

and J terms grow without bound and dominate the right side. In this present

analysis, 0 has an upper bound of (27r)10; however, the effect of secular terms

remains since J 28, J182, etc., are all of order J as 0 -f (21r)10 3. An infinite series

would have to be retained.

In this present work, three additional techniques had to be devised to deal

with secular terms to second order. These techniques will be discussed in the next

section. The perturbation method therefore is not strictly the Method of Strained

Coordinates, but a variation of that method.

The basic steps in the perturbation procedure are as follows:

1. The dependent variables and independent variables are expanded as func-
tions of a small parameter (J).

2. The variables are then substituted into the equations of motion, and the
equations are solved consecutively. Each solution yields a more exact ex-
pression for the appropriate variable.

The process is carried out through second order to demonstrate that all secular

terms may be eliminated and that the solutions are bounded. The following sec-

tion highlights the calculations involved in the process and shows the first order

equations and solutions. The second order expressions are long, and their display
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in this context would not contribute to tne analysis since only a few specific terms

are relevant. The complete expressions are contained in Appendix B; they will be

referred to during the course of the analysis.

C. SOLVING THE EQUATIONS

1. First Order Approximation for i and n

The equations to be solved are (5.25) aid (5.26). Since the right side

of these equations are analytic functions of J, it is reasonable to expect that the

solution to u will be arbitrarily close to the two-body solution, 1 + e cos(0 - W),

when J is sufficiently close to 0. Likewise i, 0, and y will be arbitrarily close to

z0, 10o, and 0 - w, respectively, when J is close to 0. This assumption amounts to

letting

u = I + e cos y + Jul + J 2u 2 +... (5.2)

y = 0- + JY1 + JY2 +... (5.3)

i = lo + Jt +Ji 2 + ... (5..

0 = no + Jnl + Jf2+... (5.5)

The first step in the solution of the equations of motion is to substitute

(6.2) - (6.5) into equation (5.25) and equate the coefficients of J. The result is

(-22' sin 0 + [2" cos 8)sin io - 2i'1 cos 8 - I"sin 0

2 cos i0 sin i0 sin 0(1 + e cos y). (5.6)

Sin i and cos i have been replaced in the above equations by their approximations:

sin io and cos i0 . These are valid approximations since [", [n', i", and i' are all of

order J.
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Equation (6.6) is a linear differential equation with two unknown func-

tions. Terms of the form cos 0, sin 0, etc., on the right side of this equation, and

the more general equation (5.23), will produce secular terms in i and fl. It should

be recalled that these same terms cause secular terms in u. Note that (6.6) con-

tains a sin 0 terms on the right side. There would be a need to eliminate this

term were it not for the condition, placed on 0 and i by the definition of the

reference plane. Specifically, 0, which governs the rotation of the reference plane,

must be expressible as an unbounded (secular) term plus bounded periodic terms,

and i must be bounded. The fact that fl must contain a secular term negates the

requirement to eliminate the sin 0 term. Therefore, a solution of the form

f1 = a + a2 sin y

i 1 = '3 cos y (5.7)

is assumed.

By substituting (6.7) into (6.6) and equating coefficients, the following

solution for i and fl is obtained:

t Il = -2/3 e cos i0 sin ic cos y

nj = -0 cos i0 - 4/3 e cos i0 sin y (5.8)

2. Second Order Secular Terms in i and fl

Equation (6.8) satisfies (6.6) to order J. The next step in the process

is to substitute (6.2) - (6.5) and (6.8) into (5.26) and solve for ul. However,

proceeding with (6.8) in its present form will lead to secular terms in second

order. A brief paragraph will explain why secular terms are anticipated.

Success in using perturbation methods requires a certain a priori knowl-

edge about the nature of the particular problem one is trying to solve. There is a
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certain amount of trial and error involved in the process. For instance, the success

of the Method of Strained Coordinates depends on the knowledge that a secular

term will arise in the first order solution to (5.26) and that a mechanism (the

strained coordinate) can be put in place one step ahead in order to eliminate the

secular term. The second order secular terms were found by this same trial and

error process.

Returning now to equation (6.8). it was discovered in this analysis that

the problem terms

(-45ss + 28s) j 2e2 c sin(2y - 0) (6.9)
24

and
5 J2s3e2c sin(2y - 30)
8

(where s =sin O, c =cos i0).

appear on the right side of (5.23) when it is expressed to order j 2. The appearance

of these terms that give rise to secular terms was unexpected. They were not

reported by 3renner because the authors assumed a small eccentricity and dropped

J 2e 2 and higher terms.

There were several failed attempts in dealing with these new terms be-

fore an effective measure was discovered. First, an investigation was made into

the effect of retaining the secular terms.

The secular terms produced by (6.9) are:

= (15S 3 - 14s)e 2 c 0 sin(2y - 20)
24

12 -(15s 2 -7) e2cO cos(2y - 2d).

12

As was demonstrated earlier, when 0 -- (27r)10 3 these terms are of order J and

must be retained in the first order solution. As the solution progresses, these terms
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will continue to produce secular terms with coefficients JP82 , J4 3 , ... , Jnen-'. A

convergent series representation for these terms was not found.

The remaining alternative was to alter the form of (6.7) to eliminate

secular terms. If terms with arbitrary coefficients can be found which when added

to (6.7) produce terms of identical harmonics to the same order as (6.9), the co-

efficients may be chosen so that all terms with these harmonics are eliminated.

Essentially, the only terms that may be added to (6.7) are terms which satisfy the

original differential equation, equation (5.23). Therefore, one may add homoge-

neous solutions of the differential equation or arbitrary constants.

Adding an arbitrary constant to (6.7) has the following effect on higher

order terms. From equations (5.23) and (5.24), it would appear that only the

derivatives of i and fi enter into the higher order calculations, and therefore arbi-

trary constants would be eliminated. This is true for 1i, but not for i. To explain,

it is reca!led that the approximations sin i = sin i0 and cos i = cos i0 were valid

for the first order approximation of il and 0t1. This approximation was valid since

all terms were of order J. However, in the calculation for ul there is a term

cos' i/ cos2 io that is of order 1 (Eq. (5.26)), therefore a better approximation for

i is required. Using (6.7) and the Taylor series expansion for cos i (keeping only

terms of order J) results in

cos i = cos(io + f(J)) = cos i- sin iof(J)

= cos io - sin io(ij)

Adding an arbitrary constant K to (6.8) results in

cos i = cos io 2- sin i0(2/3 J e cos io sin i0 cos y + K,)

(A similar expression is required for sin i)
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Therefore, a constant added to (6.8) will alter the form of subsequent

terms, but not in the form required to eliminate secular terms in i 2 and f02. It will

be shown that a constant like K. will produce a term of the form KJ sin2 io in u,

and terms of the form & J2e sin2 i0 cos i0 cos Y in i2, and K.J 2e sin2 i0 cos i0 sin y

in f12. Although they cannot be used to eliminate secular terms, the constants

will be needed to satisfy the initial condition, therefore it is essential that they do

not produce irremovable secular terms to higher order.

The next alternative for the elimination of secular terms is to add a

solution to the homogeneous equation of (5.23). While it will be shown that this

technique is successful in eliminating secular terms in u2, it did not succeed in

removing them in i2 and f12. It failed because the homogeneous terms produced

new secular terms to higher order. Many various combinations of homogeneous

solutions were added to (6.7), but all attempts along this line only complicated

the problem.

An answer to the question of how to eliminate the secular terms was

suggested in a report by Weisfield [Ref. 31] on polar orbits. When faced with the

problem of eliminating secular terms from his equation for A', Weisfield added a

term like cos(2y - 20). Now to the particular order to which one is working this

term acts like a constant in the derivative, e.g., let,

y= + JO

then
d
--(cos(2y- 20))6 sin(2y - 20)(2- 2(1 + J)) 0(J).
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The attempt was then made to apply Weisfield's technique to this more

general problem. (6.7) would then become

i= -2/3e cos io sin io cos y + fi cos(2y - 20) + R 2

I= , cosi - 4/3ecos i0 sin y + fssin(2y - 20) + K 4 . (6.10)

where: R1 - -K 1 e2 cs K2 = K1 cos(2w) + K 2

Ks = -Kse'c R 4 = -K 3 sin(2w) + K4

(It is noted that (6.10) still satisfies (6.6) to order J)

The added harmonic terms produce identical harmonics as (6.9) to sec-

ond order and no other new secular terms. Thus, they allow for the elimination

of these problem terms.

3. First Order Approximation for u

With valid expressions for il and f01 established, the procedure may now

be continued with the calculation of ul. Substitution of (6.2) - (6.5) and (6.10)

into (5.26) and letting sin i0 = s and cos io = c results in the following equation

d 2 u l 5e 2S2 cos(2y + 20)

d-2  82ecosyy± 8

+ 2e 2K, s2 cos(2y - 20) +e 2s2 cos(2y - 20)
8

5es 2 cos(y -- 20) ile 2 s scos(2y) 5e 2 cos(2y)+ - +
3 4 2

2 3e 2s2 cos(20) +s 2 cos (20)5 es cosy±4ecosy+ +
4 2

17e 2s 2  5s 2  7e 2

2e 2K2 - 2 --_722e +1. (6.11)12 2  
6

In the above equation, the cos y terms will produce secular terms in ul. A choice

of Yi = (5s 2 - 4)/'2 will eliminate that possibility. y becomes

y = 0 - J - J S 2) 2+ jy 2 0.
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Equation (6.11) becomes

dO2  + = 82 (2y + 20) + 2e2K1 s2 cos(2y - 20)

e2S2 cos(2y - 20) 5es 2 cos(y + 20) 11e 2s2 cos(2y)
+ 8 + 3 4

+ 5e2 coS(2y) + 3e2 S2 cos(20)+ 2 cos(20)
2 4 2

17e~s2  5s 7e2

2e 2 Ks 2 cos(2w) - 2K2s2 12 2 + -e- + 1. (6.12)

To solve (6.12), a solution of the form

u = a, cos(2y + 20) + a 2 cos(2y - 20) + a 3 cos(y + 20) + a 4 cos(2y)

a cos(20) + a0  (6.13)

is assumed.

Equation (6.13) is substituted into (6.12) and the coefficients of like harmonics are

equated. The coefficients are:

-e2S2
aj = 24

02 2K~+ 1)

-5es
2

a3  24

= (11s2 5) e2

054 -- 4

a4 12 6)

1

e

6
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Equating (6.13) for ul results in:

U = e2S2 cos(2y + 20) + 2e 2KIs 2 cos(2y - 20)
24

e2S2 cos(2y - 20) 5es 2 cos(y + 20) 11e 2s 2 cos(2y)
8 24 12

5e2 cos(2y) eIs2 cos(2 0) ' co(20) 2e'K 1S2 cos (2w)
6 4 6

2K2s2 _ 17e2$2  52 +  + 1. (6.14)

4. Second Order Secular Terms in u

The above expression for ul is not complete. Looking one step ahead

it is known (by trial and error) that the following problem terms arise in the

differential equation for u2.

d2U2  (75e 3s4 - 200e 3s2 + 136e3  e3  )-

dO2  240 15(5s 2 -4))

(375e 3 s 4 + (-480e 3 - 40e)s 2 + 136e3  e3  )
+ 240 15(5s2 - 4) cos(y - 20)

2e2 (225e3S4 - 22505.2 + 2e 3) cos(2w.) +_2e3 cos(.1,')(2 eYo- 6 + o(2

6 " 75s 2 -60

(450 (36 488e).s -5 co6y(45e 3 - 550e)s4  56e cos(y) (6.15)

(Only the problem terms are displayed. The complete expression is equation (B.5),

App. B.)

The harmonics cos(3y - 20), cos(y - 20), and cos y all cause secular

terms in u 2, and therefore must be eliminated. In addition there is another more

troubling problem with (6.15). That is, certain terms have in their denominator

(5sin" ir - 4). and if t, = sin - 1 \F45. then the denominators are zero. This in-
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clination is well known in Astrodynamics, and has been named the critical inclina-

tion, or more appropriately the critical inclinations since there are two: i0 = 63026'

and 117034 ' . The problem of the critical inclination will be dealt with later in the

analysis. In addition, there is qualitative discussion of the critical inclination in

Appendix C.

The task is to eliminate the three terms which give rise to secular terms

in U2 from the right side of (6.15). By inspection it is seen that a proper choice of

Y2 will eliminate secular terms produced by cos y. It was then discovered in this

analysis that the addition of a term of the form cos(y- 20) -cos(y+2w) eliminated

the cos(y - 20) problem term. This term may be added since it is a solution to

the homogeneous equation. There remained one term to eliminate; co:(3y - 20).

This term can be eliminated by adding a term with the harmonic sin(2y - 20) to

yi. In addition, a constant was added to yj to satisfy the initial conditions. The

complete first order expression for y is now

0 o ~+ j (0 (' s2 - 2) +R 5 sin(2y -20) +K 6

+J 2 y 20. (6.16)

where ffs = -JK and K6 = -JKs sin(2w) + K6 .

By adding -K 7 (cos(y-20) + cos(y +2w)) to eliminate a secular term and Ks cos y

+K 9 sin y to satisfy initial conditions, ul becomes

-1 e2s2 cos(2y + 20) + 1W 2 S2
24 + Ks co s (2y - 20)

e2S2 cos(2y - 20) 5es 2 cos(y + 20) K cos(y - 20)
8 24

* eK 7 cos(yA2) lle 2s 2 cos(2y) 5e2 cos(2y) + Kg sin(y)
12 6

K8 cos(y)- e2S2 cos(20) S2 cos(20) _ 2e 2Kjs2 cos(2 ,,)
4 6
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- 2K 2s 2 17e 2  S 2  2+  +  . (6.17)

12 2 6

5. Second Order Solution for i and f0

With all terms in place to deal with secular terms the calculations are

continued by substituting (6.2) - (6.5), (6.10), (6.16), and (6.17) into (5.23) to solve

for fl2 and i2 , and to evaluate the constants K1 and K3 . The result is contained

in Appendix B, i.e.,

(-2fl2 sin 0 + f" cos 9) sin i0 - 2i cos 9 - 4 sin 0

= Right side (B.1), (Appendix B).

An inspection of (B.1) reveals that the coefficients of sin(2y - 0) and sin(2y - 30)

form respectively the following simultaneous equations:

(5K 3 + 10K 1 - 45)e 2sIc (4K 3 + 4K 1 - 7)esc 

24 6

5- 5K 3) e2 S3 C + (4K, - 4Ka)e 2 SC= 0.

Solving these equations results in

15s2 - 14
K1 = 2 - 4 (6.18)

24(5S2 -4)
75s 4 - 120s 2 +56

K3  = 24(5s 2 - 4)2 (6.19)

Substitution of these values for K1 and K3 into (B.1) gets rid of all sin(y - 20)

and sin(2y - 30) terms. With an assurance that no secular terms will arise, the

equation for 112 and i2 can be solved.

Before progressing, it is noted that (6.18) and (6.19) contain the same

problem denominator that was observed in (6.15). In fact, (6.18) and (6.19) are

the first occurrence of the critical inclination term in this analysis. The term then

67



continues to manifest itself in all higher order analyses. The reason for the presence

of the term is simple to explain. The constants K, and K3 were multiplied by the

derivative of yj (d- = ( s2 - 2)) during the analysis. The derivative then shows

up in the denominator of these constants when they are evaluated. It will be

important to show later in the results that despite the occurrence of an apparent

singularity, the final solution is uniformly valid for all inclinations, including the

critical.

With secular terms removed the following equation can be solved for fl2

and i2.

(-2fl' sin 8 + fl" cos 0) sin i0 - 2i cos 0 - 4 sin 0 (6.20)

= Right side (B.2), (Appendix B.).

As was done in (6.6), a solution which includes the harmonics of the right side of

(B.2) is assumed for f12 and i2. This solution is substituted into (B.2), and the

coefficients of the various harmonics are equated. Once again the conditions are

that f22 must be expressed as a secular term and bounded periodic terms, while

i 2 must be bounded. The solution :1-

f12 = Right side (B.3)

I2 = Right side (B.4). (6.21)

6. Eliminating the Final Secular Terms

To complete the solution the remaining constants must be found. Three

of the remaining six constants, Y2, K5 and K7 , are obtained from the differential

equation for u2. It is recalled that these constants are used to eliminate secular

terms in U2 . There is no need to solve the equation for U2 since the constants may

be evaluated from the right side of the differential equation. Therefore, (6.2) -
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(6.5), (6.10, (6.16), (6.17), and (6.21) are substituted into (5.24). The resulting

equation is (B.5).

As in the previous solution for f12 and i 2, the secular terms in u2 arc

eliminated by setting the coefficients of the problem terms, i.e., (6.17), equal to

zero and solving for the constants. The results are:

K5 = 75e2S6 - 260e2S4 + 296e2S2 - 112e2

192 ( 82 - 2)2

15e 2s 4 - (14e 2 - 2)82K7=
48 ( S2 - 2)

e 2 cos(2u))
Y2= -30os22) (6.22)

30O( S2 -2) Y

where

2 4CsW- 0 + 26es 2 cos(w - 0o) 15e 2 s4 cos(2w)
3 8

15e2s 2 cos(2w) e2 cos(2w) 15e 2S4  275S4  3e 2S2  6182+++ -- + -
8 60 32 48 8 12

7e
2

12

With the above constants evaluated, it is assured that the second order expression

is free of secular terms.

7. The Initial Conditions for y, i, 0, fl

The task now is to evaluate the remaining constants by establishing the

initial conditions. At t = to, it is required that the velocity vector of the satellite in

the reference plane be tangent to the corresponding two body ellipse determined

by the satellite. In addition to the initial conditions established for r and ir.

(5.27). it is recalled that at t = to

y = 00 - . l= i0C and fl = fl 0
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From (6.16) and (6.22):

y= 0-W+J (0 ('2 -2)

(75e2S6 - 260e 2s4 + 296e2s2 - 112e 2)(sin(2y- 2) -sin(2w))

192 (ES2 - 2)2

+ K 6 -e 2 J2 cos(2w) + j2(+ K6 + J 92 (6.23)
30 ( S2 - 2)

Choose K 6 such that at t = to, y = 0o - w; therefore,

K 6 = Je0  -S- 2) (6.24)

To obtain the initial condition for i, use (6.10) and (6.18) so that

I= io- 2/3Jecs cos y - Je 2 cs (15s 2 - 14)(cos(2y - 20) - cos(2w)) + K 2 . (6.25)

24(5S2 - 4)

It is evident that the Je 2 terms are eliminated when y 0 - w and 0 = 00. The

result

K 2 = 2/3Jecs cos( 0o - L,) (6.26)

gives the desired i = io at t = to.

For £2, (6.10) and (6.19) are required. In addition all secular ternis from

£22, equation (B.3), App. B, are needed since all these tprms are of order J.

Therefore,

ce 2J(75s'- 102s 2 + 56) (sin (2y - 20) + sin(2.,.))
24(5.,2 - 4)2

4ceJ sin y cc 2 J2 cos(2 ) O 5e 2 J 2 S2 cos(2w)0

3 15s 2 - 12 8

_ ce'Jcos(2.)O- 5cJ 2K 2s2 0 5ce 2J 2 s2 0 5cj 2.s 20

12 24 3
cc 220' CJ20- KJ4 (6.27)

6 2
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and

K4 = JcO0 + 4 Jce sin(Oo - w). (6.28)
3

8. 0 As a Function of Time. (Initial Conditions for r,

To complete the evaluation of the remaining constants in u, it is nec-

essary to give 0 as a function of time. The expression for the perturbed 4 thendO

can be related to the well-known two-body formula, and from this relationship, an

expression for r and d" may be derived. The task will be to choose K8 and K9 so

the conditions as given by (5.27) are satisfied, i.e.,

r(to) a(1 - e2 ) dr ( a(1 - e2)e sin(0o - w)
1 +e cos(Oo - w) -o (1 + e Coso(0 - -) -

Proceeding in this manner, the formula for L can be obtained from the

de

relation

dt do dt do$ r2 cos2 6
dO dO dp dO h cos i0

Direct substitution of the derived expression for equation (5.21), results in

dt r2 L ( e2 cos(2y - 20) - e2 cos(2w) e s2 cos(2y - 20)
dO 1 15(5s 2 -4) 8

e2 cos(2y - 20) es 2 cos(y 4- 20) es 2 cos(y - 20)
60 6 2

4es 2 cos y 4e cos y s2 cos(20) 2es 2 cos(' -
-4-

3 3 2 3
e2s2 cos(2) e2 cos(2l,) s 2  (2)

- 2 + + - -(6.29)

8 60 2 1

At t - tc

- (0 ,) = ' ("
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The above condition is an integral from the two-body problem. If (6.29) is evalu-

ated at 0 = 00, then may be expressed as

r 
2  T

2

_-(1 + JK 10 ) = _r
hh

where

Kjo= Ces cos (W + 0)+ 2es2 cos(w - 6o) 4e cos(w - 00
2 3 3

es 2 cos (w - 30o) S2 cos(20o) 82

6 .2 2

From this expression, a formula for h results:

h = h(1 + JKjo)

so that from (6.29)
dt r 2

=d - h(I + J(-go +..)

Using
h 2 

2h 

2

P GM -= M( 1 + 2JKjo) = a(1 - e2)(1 + 2JKo)

a new formula for r, which incl-ades the first order perturbation effects, may be

written as

r = c a( -e 2 ) (6.30)
u 1 + e cos y + J(-2K1 0 + ul)

where ul is (6.17).

The formula for d is

dr a(1 - e2)e sin y

dO (1 + e cos y) 2

Ja(e - 1) e2s 2 sin(2y -- 20) 5es 2 sin(y + 20) eK7 sin(y - 20)
(1- e cos y)2 6 8
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- e~si~y 2w 1 le's2 sin(2y) +5C 2 sin(2y) 5S 2 sin(y)
6 + 3 2

-Kssiny+2esiny+Kgcosy+ e8 sin(20) 82 sin(20) (6.31)

Next, evaluate (6.30) and (6.31) at 0 = 00. Keep only the terms to order J. The

result is two simultaneous equations that can be solved for K8 and Kg:

e2s2 cos(3w - Go) lle2s 2 cos(3w - 30o)
16 24

5e2 cos(3w - 300) e2s2 cos(3a- - 50o) 31es 2 cos(2w - 20o)
12 16 12

7e cos(2w - 20o) 3es 3 cos(2w - 40o) lle2 S cos(w + 0o)

3 8 16

s2 cos(a + Oo) lie s2 cos(W - 0o) +7s cos(W - Go)
4 8 2

31e 2 cos(w - 00) - 3 cos1(w - O) - 17e 2 S2 cos(w - 30o)
12 48

7s2 cos( c - 30o) es2 cos(2) 5es2 cos(20) 13es 2 
- 7e (632)

12 2 4 12 3

e 2 s2 sin(3- - Oc) 11e 2s2 sin(3, - 30c) 5e2 (3' - 30c)
16 24 12

e2s2 sin(3.: - 50o) 31eS2 sin(2, - 20c) 7e sin(2' - 20c)
16 12 3

3es 2 sin(2 . - 40c,) 7e2s2 sin(w + Go) S2 sin(w + 0o)
8 16 4

67e2s2 sin( . - 00) 7s 2 sin(w - Go) 29e2 sin(w - Oc)
24 2 12

l3e 2 s 2 sin(w. - 30o) 7s2 sin( . - 30,)

48 12

es 2 sin(2-) 3es 2 sin(29c) (6.33)
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Substitution of the values of Ks and K9 in the equation for u insures

that the remaining initial conditions for r and - are satisfied.

C. THE RESULTS

1. Preliminaries

It was noted that throughout the calculations in this chapter the term

(sin2i°-2) appeared in the denominator of terms in ul, i 2 , f12, and u2 . It would2

appear that the solution is not valid when i0 - + sin -1 0/5. And if the solution

is not valid near these "critical inc!inations", then one should question the calidlty

of the underlying perturbation process.

The purpose of this last section is to display the final solutions for y, 1,

f), and u, and to show that each of the apparent singularities can be eliminated

in the limit as as io approaches ± sin - ' /4/5. It is a remarkable aspect of this

analysis that every term that appears to cause a solution to blow up is exactly

canceled by a corresponding term that is "hidden" in the solution.

2. First Order Solution for y

By use of trigonometric identities, (6.23) may be rewritten as

Y O-W+j J 5 ( 2 - 2

- e2 (75s 6 - 260s4 + 296s 2 -112) (2  J o  s _ 2  s i  (J  s , _ 2K

Je96 (%S2 -2)2 Cos (2 O( -) i JO \2 S-

e2 j 2 O 2 ) J00 - 2 + o(J 2 , j1, +...). (6.34)

30 ( S2 - 2) (

Equation (6.34) is the complete first order solution for y. If the initial

inclination is such that Js 2 - 2 < 10- 1, then (6.34) should be replaced by its
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limit:

e2J 3s in(2w)02 + 8eJ 2 cos(w - 80)8 17e' J 2 cos(2w)O
15 15 60

+22 2 + O (3 2, d36, j403 S 2 -2 )+ )
+ 60 5+ (~2 +

3. First Order Solution for i

As was done with the expression for y, i is rewritten as:

= io+ Jcs ( e[cos(9o - w) - Cos Y

e2(15s 2 - 14) sin [2w - JO ( s 2 - 2)] sin [jo ( 52 - 2)] /

24 ( S2 -2'

+ O(J 2 ±+ J+'O+...). (6.35)

Again, as in y, should io be near the critical inclinations, s 2 -21 < 10-,

then (6.35) should be replaced by:

4_e J2 Oe2 sin 2wv
o + -[cos(00 - W)- cos(0 - w)] + 30

15 3

0 j2 j30' 302 sin 2 i0 - 2) +.)

4. First Order Solution for fl

Rewriting (6.27) for fl results in

fl = f2o- JOc

- ,.e2 J (75s' - 120s 2 + 56)

48 ( s- 2)2

[cos (2 - JO (2 S- 2)) sin (o (2 -2 )2

4ceJ sin y ce 2 2 cos(2L)0 5ce2.j 2s 2 cos(2w)0
3 15s - - 12 8
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ce 2J2 cos(2w)O 5ceIJ2 sIO 5cJ2 S20
+ 5cJ 2 K 2s2 - +

12 24 3

ce 2 J 2 O cJ 28
-+ + K4 + O(J 2,J 3 6, J 492 +...) (6.36)6 2

where

K2 = 2-Jec8 cos(do - w)
3

K4 = Jc80 + 4 jce sin(0o - w).
3

If J 
2 - 2 _< lo - , then

4ceJ sin(0 - w) ce 2J3 sin(2w)0 2  5ce2J 2 cos(2w)91 0= o- JOc - + -+
3 6 12

ce 2J 20 11cJ 2 0
+ 4cJ 2K 20- + - + K4

3 6

*+ O(j2 +j30 +j403 (2 -2)+.)

where

4
K 2  - Je cos( 0o - W)

15

__ 4
K 4  = 5 JOo + - 1/5 Je sin(Oo - w).

3

5. First Order Solution for u

The complete first order solution for u is:

+ e cosy e2jS 2 COS(2y -2 ) + 2e 2JKIs2 cos(2y - 20)

e2 Js 2 cos(2y - 20) 5eJs 2 cos(y + 20) lle 2 Js 2 cos(2y) J K 7 COS(Y 20)

+ 8 24 12

5e 2J cos(2y) e2Js' cos (20) Js 2 cos(20)

eJK7 cos(y-,-2) - 6 4 6

- Kq sir( - c) - JK 8 cos(w - 00) - 2e 2JK.s2 cos(2. ) - 2 . 2

1 ,e 2Js" 31/ 7e 2J
_____ ___J -1- O(J2)  

(6.37)
12 2 6

7G



where

15s2 - 14

K1  48 (ES2-2)

K 2  = 2ecs cos(Oo - v)

= a- w +Je 58 -2)

- je2 (75S6 -26OS4 + 296S2 - 112) Cos (2w - JO 5 -2) sin (je (582 -2))
48 ( S2 - 2)2(2

K9  -- Equation (6.33)

Applying the condition 2 - 21 < 0 -9, the expression for u is

eKJ cos(40 - 22) e2  cos(2w) eJ cos(30 - )
u= I- _+_ --2)

30 10 6
e 2J cos(20 - 2w) + JK9 sin(2 _ w) + JK 8 cos(00 - w)

10

eCos (e 2J 3 sin(2)O
2 + 8eJ 2 cos(w -)0

15 15

17e 2 J 2 cos(2 ')O + e2J 2 0 2J 20 + 0 - w

60 60 5 /
e(8e 2 - 8)J 2

0 sin(O + w) e2J cos(20) 2J cos(20)

120 5 15

2e 2 J 2 sin(2) j + 0 j2 j3, j302 5 2 2
15 5 30 2

Where KR and K9 are no,:

el cos(3.' - 0o) e 2 cos(3j - 30o) e2 cos(3L, - 50o)

20 20 20
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4e cos(2w) - 20o) 3e cos(2w - 40o) 11e 2 cos(w + 00)

15 10 20

coS(L + 0o) 89e2coS(wO - 0o) coS(W - 0o)

5 60 5

17e2 cos(w - 30o) 7 cos(w - 30o) 2e cos(2w) _ e cos(20o)
60 15 5

22e- - +(J)
15

e2 sin (3w - 00) e2 sin(3w - 30o) e2 sin(3w - 50o)
20 20 20

4e sin(2w - 200) 3e sin(2w - 40o) 7e2 sin(w + 00)
+ 15 + 10 20

sin(w -4 Oo) lie2 sin(w - Oo) sin(w - Oo) 11e 2 sin(w - 30c,)-+ + +
5 60 5 60

7 sin(w - 3o) 2e sin(2'.,) 3e sin(20o)

15 5 5(J 2 )

The results obtained thus far may be used to predict the orbit of a satel-

lite for up to 1000 revolutions when a valid set of initial conditions are provided.

The initial conditions will usually be given as the initial displacement vector r

and the initial velocity v, whereas the solution obtained is in terms of the orbital

elements. It is important to show that the coordinates and velocity components

can be easily recovered from the orbital elements. Indeed, Reference '4' contains

the criticism that Brenher and Latta did not show how r and v would be ob-

tained. and that "the derived elements are not such that the velocity components

are readily obtainable." (Arsenault et al., Ref. 4: Vol. 2, p. 5).

Again referring back to Figure 5.4 and equations (5.1) - (5.3). the po-

sition of the satellite in the coordinate system may be derived from its direction

cosinc :

r = r cos cos o i-r cos 6 sin oj - r sin 6 k



where r is equation (6.30) and ij,k, are unit vectors.

Measuring from the line of nodes results in

r = r cos 6 cos(O- fl)i'-+ rcos6 sin(4-f)j'+r sin bk

where i' = cos fli+sin fli

= -sin fli + cos flj.

Using the angle relationships from equation (5.1) - (5.3), the above expression is

rewritten as

r = r(cos8 cos fP - cos i sin 8 sin fO)i

+ r(cos 0 sin 11 + cos i sine cos fl)j + r sin i sin 0k. (6.38)

The velocity is found by differentiating (6.38) with respect to 0 and noting

dr dr d6

dt dO dt

The result is

(dr 1 . dr2 . dr 3 ) dOv= i-i + --- k -

kdO dO dO dt
where

dr1  dr dildr -cos i sin fl - sin 0 - cos icos fl -- r sin 0
dO =dO dO

di
sin i sin flrsin 0-cos Ir sin 0

dO
dr dO

-- cos 0- cos 0 - sin fl -r cos 0
dO dO

- cosisin flrcosO

dr 2  _ dnl
d - r -cos I sin fl-sin in flsin
dO dO
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.di .dfl

- sin -cos n sin + Cos fl-- cos 0

+ cos icos ncosa)

dr
+ d (cos i cos fl sin 0 + sin fl]cos 0)

dr3  dr odi=r r sin i cos 0 + sin i sin 0 -r + r cos i sin 0d

WO0 dO"

The requirement now is to find expressions for , -, and A; the expression for

dis euation (6.31).

Differentiating the expression for i, equation (6.35), and the equation

for fl, equation (6.35), the following equations for L and i are obtained:

di- --- 2Jecs sin ydO

d -= -Jc - -4Jce sin y. (6.39)
dt

The expression for dt is equation (6.29). By expanding this expression,

the following equation for L is obtained:
dt

dt - j [ 1 -J(- C2 cos(2y- 20) - e2 cos(2w) e 2S2 cos(2y - 20)

e2 cos(2y - 20) es2 coS (y + 20) es2 cos(y - 20)
60 6 2

4es 2 cos y 4e cos y s2 cos(20) 2es 2 cos(W - 00)
3 3 2 3

e2 s2 cos (2') e 2 cos (2w) s2

8 60 2 JJ

ForiS -2 < 10- 3
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dO = h 1 +j(2ecos(30-w) +2ecos(O+w) +4ecos(O-w) +2cos(20)
+tr21 5 + 15 + 5

eJ sin(2w)e 8e cos(W - 00 +3)

D. VERIFICATION OF THE RESULTS

1. Comparison with Brenner and Latta

The comparison of solutions obtained by Brenner and Latta must be

restricted to the J, Je, Je 2, and J2 terms. Brenner and Latta limited their

analysis in J to these terms and thus avoided the secular terms that arise in J2 e2 .

No mention is made of the critical inclination in their work because I s 2 - 21 does

not appear as a divisor in the terms they included. Similarly, this present analysis

neglected all harmonics in the potential except J 2 while Brenner included some of

the terms associated with the J 4 (or D1 by their notation) harmonic.

Before comparing solutions, it should be noted that there is some dif-

ference between the two works in the notation used, this analysis preferring the

more standard Astrodynamic notation. Brenner used the co-latitude angle (0) as

a spherical coordinate while the latitude (b) was used here. In addition, Bren-

ner used hl as the independent variable where M + 7r/2 defines the angle from

the ascending node to the satellite. The independent variable 6, measured from

the ascending node to the satellite, was used here. Finally, Brenner defned the

rotation of the line of nodes in an opposite sense to that done here. In summary,

6 -- 7r/2 - 9 (where 6 is co - latitude)

0 -- M ± 7r/2 (where 0 is the polar angle)

f2-. -n
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There w;U also be a difference in the constant terms. Brenner chose

initial conditions that would make the analytical solutions as simple as possible.

This analysis adopted the more general initial conditions that were outlined in

Chapter 5.

Now restricting the comparison to the terms that are left, Brenner's

solution for i and fl are respectively:

S=- 2Jecs cos y+...
3

J2 Mc 22 ~ 5J 2cs 2

fl = JMc- - JIMcs + 3Jec sin y + -- sin(2m) +
2 3 3 12

A check of equations (6.35) and (6.36) shows there is an exact match of terms of

order J. The final term in Brenner's solution for fl is a J2 term and can be found

in the solution for 02, equation (B.4). Next, Brenner's abbreviated solution for

U I is

5es 2  
S2 S-- cos(y + 2M) + - cos(2M) - 1

24 6 2

These same terms are duplicated in equation (6.17). Finally, Brenner's solution

for Yi is s - 2 which is exactly the expression obtained in this analysis.

2. Comparison with an Independent Analysis of Polar and
Equatorial Orbits

Appendix A contains an independent analysis of the polar and equatorial

orbits. Since for the polar case there is no variation of inclination, no rotation of

the line of nodes, nor dependence of the motion on the longitude 4, new equations

must be derived. The equations cannot be solved in terms of the angles i and 01.

Instead, the equations are solved in terms of the variable A' which is related to

dt
d6"

For the equatorial case the inclination remains constant. The line of

nodes is undefined since the satellite remains in the equatorial plane; however, the
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angle 01 does change with time. Instead of using the polar angle 0 to measure the

angular displacement of the satellite, the angle 0, measured from the fixed axis -1,

is used. A new dependent coordinate is defined as

Y = - K +JY4 + JY:O

As Appendix A demonstrates, there is exact agreement between the

special polar case and the general case for i0 = 90*. In addition, when the appro-

priate change of variables is made in the equatorial case, it agrees exactly with

the general case at io = 00.
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VII. CONCLUSIONS
AND RECOMMENDATIONS

The results achieved in Chapter VI represent a unique solution to the problem

of a satellite in orbit about an oblate planet. In fact, prior to this present work

the problem had not been solved in this represcntation [Ref. 18, p. 340]. In

contrast to the universal solution presented here, all other methods require a

reformulation of the problem in alternate variables in order to achieve solutions

at various singularities, the most prevalent being the critical inclination.

The results support the theory that at the critical inclination there are no

discernable features in the perturbations of the elements that distinguish it from

any other. This conclusion was reached by Lubowe [Ref. 38], is shared by Taff

[Ref. 18i and has been corroborated by the physical data. However, all analyti-

cal solutions arrived at via canonic transformations predict perturbations in the

vicinity of the critical to be 25 times greater than those away from it.

The perturbation method used in the analysis embodied the principles out-

lined in Chapter I. First, the resulting solutions are significantly more accurate

than the two-body solution. For the appropriate orbits, the relative error of two-

body solution is 1000 times greater than the solution obtained here. Second the

solution was obtained in parameters closely related to the classical orbital elements

and in Cartesian coordinates; no transformation to an alternate non-physical set

of elements was required. Therefore the physical effects are easily distinguishable

throughout the analysis. Finally, as has been noted the solution is valid for all

orbital parameters.
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While the perturbation method was similar to the Method of Strained Co-

ordinates several novel techniques for dealing with secular terms and apparent

singularities were introduced. The verification of these techniques was possible

due to the extensive use of the symbolic computer program MACSYMA which

allowed for the investigation of higher order formulas.

The analysis suggests several areas for further research. The areas include:

" The addition of the higher harmonics of the gravitational potential, e.g., J3 ,
J4, etc., to the problem.

" The investigation into the feasibility of including non-conservative perturb-
ing forces such as drag or solar radiation pressure.

* Numerically integrating the equations of motion subject to the initial condi-
tions used here in order to check the analytic results.

* An in-depth analysis of the use of canonic transformations in satellite orbit
prediction to include a comparison with the method used here, the purpose
being to determine if the critical inclination singularity is an artifact of the
transformation process.
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APPENDIX A

THE POLAR AND EQUATORIAL ORBITS

A. THE POLAR ORBIT

Reference is made to the general equations of motion, equations (5.13) -

(5.15). Now in the case of a polar orbit, the longitude 0 is a constant. Therefore,

the equations of motion are reduced to

d- _ r (-O)' = -GM - V - sin2O)(Ani)

d- ( O) = _ --GM-R2 sin(20). (A.2)

Let J 2 - and u=p/r

where P W 2/GM.

Define a function A such that

dt

so that

d hu 2 A d
dt - 2 dO"

Applying (A.3) to (A.2) the independent variable can be changed from t to 0.

Equation (A.2) may be rewritten as

dA
2

d - _2Ju sin(20). (A.4)dO

Similarly equation (A.1) becomes

du -- Ju ! sin(20) + u- - U -2 (A.5)
dO A2
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To solve (A.4) and (A.5) a solution of the form

A' = 1+ JE 1 + j2E2 +... (A.6)

u = 1+ecosy+Ju,+J 2u 2 +... (A.7)

where y = O-w+Joy+J 2e Y2 +... (A.8)

is assumed.

Substitution of equations (A.6) and (A.7) into (A.4) and equating coefficients of

order J results in:

dE - -e sin(y + 20) + e sin(y - 20) - 2sin(20). (A.9)

dO

A solution of (A.9), ignoring terms of order J2 or higher, is

e cos(y + 20) + e cos(y - 20) + cos(20)
3

+ Kle 2 cos(2y - 20). (A.10)

Substituting (A.10), (A.6), and (A.7) into (A.5) yields to order J

du1  5e_(2__+_20
d + u 2e cos Y Y + 5e 2 (2y e2K cos(2y - 20)dO 8

e2 cos(2y - 20) 5e cos(y + 20) e' cos(2y) e cos(y)+ + ecsy
8 3 4

3e 2 cos (20) cos(20) e2  1+ +
4 2 4 2

The cos y term would produce secular terms in the ion to ul, therefore Yi is

chosen as 1 to make the coefficient of cos y zero.
2
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The resulting equation is

dal + ud 
1  _ 5e 2 cos(2yo220) 20) + e2 cos(2y - 20)

WO±U 8 -Kcs(y 2)8
5e cos(y + 20) e2 cos(2y) 3e' cos(20) cos(20)

3 4 4 2

e22e2  1

4 2 (A.11)

It is assumed that the solution to (A.11) has the following form:

u,1 = a0 + a, cos(2y + 20) + a2 cos(2y - 20)

+ a3cos(y + 20)+ a scos(20). (A.12)

Equation (A.12) is substituted into (A.11). The unknown coefficients may

then be solved for by equating the coefficients which have the same harmonics.

The results are:

e2  1ao - -
4 2
e 
2

a - --
24

a2  
(K - 1)e 2

8

5e
a 3  --

24
e 
2

a 4  - 12

e2  1
as --

4 6

Substitution of these coefficients into (A.12) results in

e2 cos(2y -- 20) e 2K (2 20) e 2 cos(2y - 20)

24



5e cos(y + 20) e2 cos(2y) e2 cos(28) cos(20)
24 12 4 6

e2e2  1

4 2

The following complementary solutions must be added to the particular so-

lution for u to ensure that any secular terms in the second order solution can be

eliminated

-K6 cos(3y - 20) - K 7 cos(y - 20).

The first order solution for u now has the following form:

e J cos(2y + 20)
u 1 +ecosy-JKcos(3y-20)- 24

e2j(8K1 - 1) cos(2y - 20) seJ cos(y + 20) _ JK7 COS(Y 20)
8 24

e2J cos(2y) +J si y- K c y
+ e jCs2)+ J K9 sin y + J K8 cos y

12

(3e 2 + 2)J cos(20) e2 j j

12 4 2

The expressions for E, and u, are substituted into (A.6) and (A 7) respec-

tively. (A.6) and (A.7) are then substituted into (A.4). The result is

dE 2  -K sin(3y2-40) sin(2y + 40) e 2 sin(2y + 20)
dO 24 12

+ eL'1sin2y 20 + 2 sin(2y - 20) - e2K1 sin(2y - 40)
+ e2KIe 2 sin(2y - 20)_212

K, sin(2y - 0) * 12 e sin, s-2 20)0
e2 sin(2y - 40) 5e sin(y + 40) sisin(y + 20)

* 8 24 - K6 sin(y + 20) + 6
esin(y - 20) - K9 cos(y - 20)

* Kgcos(y + 20) + Kssin(y - 20) e- 2

- K 7 sin(y - 40) + K5 sin(3y) + e2K, sin(2y) - e2 sin(2y)
6

5e sin y e2 sin(40Gx) sin(40)+ K~sin y + +± -
24 4 6

e2 sin (20)- -- sin(20).
2
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Integrating this expression for E 2 would yield a secular term in the harmonic

cos(2y - 20). Therefore the constant K, is chosen as -- in order to eliminate the
12

problem term. The equation is now

dE2  Ks sin(3y - 40) e2 sin(2y + 40) e2 sin(2y + 20)
d8 24 12

5e2 sin(2y - 40) 5e sin(y + 40) _ Ks sin(y + 20)
+ 24 + 24

e sin(y + 20) e sin(y - 20)+ e 6 + K9 cos(y + 28) + K 8 sin(y - 20) + s 2

- K 9 cos(y- 20)- K7 sin(y - 40) + Ks sin(3y) - " sin(2y)
4

5e sin y e2 sin(40) sin(40)+ K7 sin y-- + + -4-
24 4 6

e2 sin(20)
+ 2 + sin(20).

Integrating the above expression yields

E2  =-K 5 cos(3y-40) _ e2 cos(2y + 40) e2 cos(2y + 26)
144 48

5e 2 cos(2y - 40) e cos(y + 40) K9 sin(y + 20)-4- - -i

48 24 3

Kscos(y- 20) e cos(y - 20)
3 18

e cos(y - 20) _K 7 cos(y - 4x) K5 cos(3y)

2 3 3

e2 cos(2y) 5e cos y e 2 cos(40) cos(40)____os(2y- K 7 cos y ___-

8 24 16 24

e2 cos(2) cos(2) (A.14)

4 2

Continuing the procedure results in the following second order expression

du 2  2 eK 5 cos(4y - 29) !4 cos(4y - 20)

dO2ecosyy 2 96

eKs cos(4y - 40) 5e 4 cos(4y - 40) 3e' cos(3y - 40)

4 576 16

90



+ 3es cos(3y + 20) _ 2Ks cos(3y - 20) - 3 cos (3y - 20)

16 48

35e 2 cos(2y + 40) 5eK 9 sin(2y + 20) 5eK 8 cos(2y + 20)
32 4 4

5e 2 cos(2y + 20) +eK sin (2 y - 20)+ +
12 4

+ eKcos(2y -20) +K 7cos(2y -20) eKscos(2y - 20)
4 2 2

e4 cos(2y - 20) 7e2 cos(2y - 20)+
48 24

3eK 7 cos(2y - 40) 3eK5 cos(2y - 40) e4 cos(2y - 40)
4 4 32

e2 cos(2y - 40) 7es cos(y + 40) 7e cos(y + 40)

8 8 4
5K9 sin(y + 20) 5Ks cos(y + 20)

3 +3
3 3

e3 cos(y +- 20) _3e cos(y + 20) + 2K 7 cos(y - 20)

16 36

e3 cos (y - 20) e cos(y- 20) 5K 7 coS(y- 40)

16 6 3

55e 3 cos(y - 40) 5ecos(y - 40) 5eKscos(4y)

144 12 4

5e 4 cos(4y) 5Ks cos(3y) 13e 3 cos(3y) eK9 sin(2y)
192 3 144 2

eK8 cos(2y) 3 3eK 7 cos (2 y) _3eK 5 cos(2y)

2 4 4

e cos(2y) 23e cos(2y) C225e 3 C o y
32 32 48

17e cos y 5 eKcos(40) 5e4 cos(40) 65e 2 cos(40)

24 4 192 32

5Cos (4 0) 3eKs cos(20) +eK 7 cos(20)+ +
8 2 2

e 4 cos(20) 37elcos(20) cos(20) eKr

96 48 3 2

eK 7 + 5 e4  167e2  (A.15)

4 576 28 6
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It is noted that three harmonics in (A.15) would p.,Juce se,.ular terms in

the solution to u2. The harmonics are cos(3y - 20), cos(y - 20), and cos y. These

harmonics may be eliminated by choosing

e
3

96

K7 = - (3es - 8e)
96

25e' + 34
Y2 =--9

The first order solution for (A.4) is

A 2  1 + J(cos(20) + e cos(y - 20)

e cos(y + 20) e2 cos(2y - 20) (A.16)
+ 3 12 (

u may now be rewritten as:

e2J cos(2y + 20) 5e2j cos(2y - 20) 5eJ cos(y + 20)
U + e cos y- + -

24 24 24

e3j cos(y - 20) eJ cos(y - 20) e2J cos(2y) e2 J cos(20)
24 12 12 4

J cos(20) e2 J J
J cos(20) JK 9 sin(w - 0o) + J K8 cos(w - 0o) - - - (A.17)

6 4 2

JO Je3 sin(2y- 20) + j 2 8(25e2 + 34)where y=0-w+--+48 + J  9

2 48 96

Equations (A.16) and (A.17) satisfy the equations of motion to first order,

and the equations produce no secular terms to second order.

A comparison may now be made between the polar solution derived in this

appendix and the general solutions for y and u, equations (6.22) and (6.37) respec-

tively. To make the comparison easier, the relatively complex initial conditions
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(equation 5.27) are discarded. Instead, following Brenner and Latta, the initial

cond;'ions are selected in order to make the expressions as simple as possible.

In - iition, constant terms like sin(2w) and cos(2w) are dropped. It will be re-

membered that these constants were added to the general solution to prevent

singularities at the critical inclination. It is a simple exercise to add the cos(2w)

term to the polar case, specifically to equation A.10, and then show that identical

results are achieved with the general case at io = 90'. In fact, this has been done.

However, to display these terms adds nothing to the comparison and only serves

to make the analysis more tedious.

Checking equations (6.35) and (6.36), it is seen for the polar case, cos to'

c = 0, there results

i = 1o 0 and 0 = 0.

This agrees with orbital theory that for the polar case there is no variation of the

inclination nor does the line of nodes rotate.

Setting sin i = s = I and disregarding the appropriate constants, equations

(6.37) and (6.22) are

e2J cos(2y -;- 20) 5e'g cos(2y - 20) 5eJ cos(y - 20)
24 24 24

e3J cos(y - 29) eJ cos(y - 20) e2J cos(2y) e2J cos(20)
24 12 12 4

J cos(20) e21 Jg K 9 sin(w'- 00)+ J Ks cos(w - O0) - - - -

6 4 2

and

Jo e3 sin(2y- 20) +J(25e -- 34)2 48 96

These results agree exactly with the (A.17) and (A.18).
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B. THE EQUATORIAL ORBIT

Reference is again made to the general equations of motion, (5.13) - (5.15).

An orbit that remains precisely in the equatorial plane is possible if only even

harmonics of the potential are considered. Now , = ° ,= 0, = 0, and the

equations reduce to
dr de OV (A.18)

d2 dt 49r
d ( d O) 0 . (A .19)
dtk dt r

As in the general case and the polar case the independent variable is changed

by use of the integral obtained from (A.19)

r2 dO = constant =

dt

d u2 d
= 2 (A.20)

dt p2 di"

Substitution of (A.20) into (A.19), results in

du J-- ,U 2Ju2  (A.21)

where: J = -3

u =P;r.

To solve (A.21). assume a solution of the form

U = 1 -- e cos y Ju J 2 u ... (A.22)

where Y" = 6- -',- J ic I _j261 2 .

Substituting (A.22) into (A.21) and equating coefficients of order J results in

d-- -Ul = -2J Ye cos Y - 2Je cos Y - e2 cos 2 . (A.23)
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The presence of the term cos Y will cause secular terms in the solution for ul,

therefore choose Y - -1. Equation (A.23) is now

d2 u e2  e2 cos 2

1 + + - Y. (A.24)
d02-22

Assume a particular solution to the above equation

ul = aco + a1 cos 2Y. (A.25)

Substitution of (A.25) into (A.24) results in the following solution for ul

e2 1 2-Ue 1 + - C o(2Y). (A.26)
2 6

The approximation for u is:

U = 1 +oe Cos Y+J (i+- - -e cos (2Y). (A.27)

The solution must be checked to ensure it causes no secular terms to second order.

Substituting (A.26) and (A.22) into (A.21) results in

d2 u2  e3 cos(2Y) +e 2 cos(2Y) +2ecos Y Y2--+u 2 = + co
d0 2  6

5es cos Y
+ 6 +3ecos Y+e 2 + 2.6

Note that the terms with cos Y will cause secular terms in u2 . Therefore, Y2 is

chosen as:
5e 2  3

12 2

The first order solution for u is equation (A.27)

where Y =O-w-J - " (A.28)

Equation (A.27) is the correct solution in terms of the variable €. To compare

the solution found here to the general solution for the case 6 = 0* will require that

(A.27) and (A.28) be modified such that they are in terms of 0.
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Referring back to Figure (5.1), it is seen that 10 is measured from the fixed

axis T such that

0 = ?r/2 + 8 + 1. (A.29)

Now, from equation (6.27), the first order solution for fl with io = 0' (sin io =

s = 0 and cosi = c = 1) is

7Je2  4 J~e20 J120
n - J 8 + -J- sin(2y - 20) - Jesinsy- +-J (A.30)3+ 20

(Note: As in the polar case, the constant terms co(2w) and sin(2w) have been

dropped in the general case for comparison purposes. As explained previously,

eliminating these terms does not affect the validity of the comparison.)

Substitution of (A.30) and (A.29) into (A.28) results in

Y 0 - w - 2J + 7Je sin(2y - 20) - 7J 2 e20 - 4Je sin y. (A.31)
48 12 3

Now, from (6.22), the solution for y with 4, = 0' is

y = O - w - 2JO - 7 j 2 e2 0 + 7 jeJ2 sin(2y - 2x). (A.32)
12

Using equation (A.32), equation (A.31) may be written as

4
Y = y - -Je sin y.

3

And therefore by use of the Taylor series expansion

cos(Y) = cos y + 4Je sin2 y
3

Equation (A.27) may now be written in terms of y(O):

U + e Cos Y +J1 +7 e 2 _- ~e2 cos 2y" (A.33)

6  6

Reference now is made to equation (6.37), the general solution for u. By

letting sin 1, = s = 0 in this equation, it is easily seen that the general expression

becomes (A.33).
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APPENDIX B

2nd ORDER ANALYSIS

Substitution of (6.2) - (6.5), (6.10), (6.16), and (6.17) into (5.23) results in

.dfl -d2i2 sin + sin . cdi 2- 2sinst-sin6#- ds-----in-cos6$-2z-cos 9
dO d02  d0 2  dO

ce K, s sin(3y - 0)= ce 3Ks 3 sin(3y - 0) - cKss sin(3y - 9) + e i
2

5ce'Kls' sin(3y - 36) + cK 5ssin(3y - 30) + ce Kissin(3y - 30)

3 6

7ce2s3 sin(2y + 30) 143ce2 s3 sin(2y + 6) 29ce 2s sin(2y + 6)

24 + 72 18
+ 5ce2 K 3s 3 sin(2y - 0) + -Ce6K6s) sin(2y - ) - -6)

6)710ce2 sin(2yin(2)

- 4ce2K 3ssin(2y- ) - 4ce2K, ssin(2y- ) + 7ce2s sin(2y -6)
6

- 5ce 2K 3s 3 sin(2y - 30) + 5ce2 s 3 sin(2y - 36) + 4ce 2K3s sin(2y - 36)
8

- 4ce2Kssin(2y- 30) - 35ces 3 sin(y + 36) + ceK 7Ssin(y + 0 + 2w)
24+ Ksin(2+ 3+) 24

- 2ce 3Ks 3 cos(2w) sin(y + 0) - ce 3K s cos(2w) sin(y . 0)

- 2ceK 2s3 sin(y + 6) + 5ces2 sin(y + 6) + 2cK 8s sin(y + 6)
8

- ceK 2ssin(y-- 0) - 4cessin(y + 0) - 2cKgscos(y + 6)
3

- ceK 7 sin (y - 0- 2w) + lOce 3Kis'cos(2w) sin(y - 6)
3

ce'K scos(2w) sin(y - 6) IOceK 2sssin(y - 6) 5ce-Ks 3 sin(y -6)
3 3 3

41ces 3 sin(y -6) 2cKssin(y - 6) - ceK 7s sin(y - 6)
12

ceK 2 ssin(y -6) ce 3Kissin(y - 6) 8cessin(y - 0)-- +
3 6 3
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+ 2cKgs cos(y - 6) - ce 3K I S3 sin(y - 30) + Wes 3 sin(y - 30)
4

Ce3Ks sin(y - 30) 5ce 2S 3 sin(30) 5CS 3 sin(30)
+ ceK7 s sin (y - 38) 2 4 3

5ces 3 sin 8
- loce2K s3 cos(2w)sin 0 - 10cK 2s

3 sin 0 + 2
12

lOcs 3 sinG + ce 2 sin 8 -es sin .(B.1)

3 3
Choose K, = 4(5214) and K 4 75s_4-120,, 2 + to eliminate the secular terms

24(6*1-4)24 (682 4)

sin(2y - 8) and sin(2y - 38) in equation (B.1), so now

d0l2  d 2i 2  d d2 _2 di 22sini- sin 0 - -- sin + sin cos0 - 2--cos 0dO dO2  d82  dO
39ce3 s sin(3y - 8) ce3s3 sin(3y - 8) _ cKs sin(3y - )

1800s 2 - 1440 8

11ce3 s sin(3y - 0) 35ce3 s sin(3y - 30) 5ce 3 s3 sin(3y - 30)+ +4
240 1800s 2 - 1440 24

+ cKss sin(3y - 30) + 7cess sin(3y - 30) 7ce 2s 3 sin(2y + 30)
144 24

+ 143ce 2s3 sin(2y + 0) 29ce2s sin(2y + 0) 35ces 3 sin(y + 30)
72 18 24

78ce~s cos(2w) sin(y + 8)
+ ceK 7s sin(y + 0 + 2w) + 180s 2  0

180082 - 1440

ce3Y 3 cos(2w) sin(y + 0) llce3S cos(2w) sin(y + 8)
4 120

- 2ceK 2s3 sin(y -- 0) + Sces3 sin(' + 0) + 2cK 8 s sin(y + 0)
8

- ceK 2s sin(y+) 4ces sin(y + ) - 2cKgs cos(y + 0)
3

ceK7s sin(y - 0 + 2w) - 70ce 3s cos(2w) sin(y - 0)
1800s 2 - 1440

5ce 3 sS3 cos(2w) sin(y - 0) 7ce 3S cos(2w) sin(y - 0)
12 72

35ce3 s sin(y - 8) 1OceK 2s3 sin(y - 0) 5ces 3 sin(y - 0)
1800s 2 - 1440 3 24
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41ces 3sin(y - 0)12n -)- 2cKss sin(y - 9) - ccK~a sin(y - 9)
12

ceK 2s sin(y - 9) 7ce 3s sin(y - 9) 8ces sin(y - 9) + 2cK;s -s(y - 9)
3 144 + 3

39ce3s sin(y - 30) ce3 8s sin(y - 30) 9cea3 sin(y - 30)

1800s2 - 1440 8 4

+ ceK.s sin(y - 30) - 11ce3 s sin(y - 30) _ 5ce 283 sin(30) _ 5cs 3 sin(30)
240 4 3

240ce 2s cos(2w) sin 9 5ce2 s3 cos(2w) sin + ce 2s cos(2w) sin 0
1800s2 - 1440 4 6

5ce 2s3 sin 9 10cs 3 sin 9 ce~s sin 9
- 1OcK 2

s 3 sin 0 + 12 - + - cs sin O. (B.2)

Solve for i2 and fl 2 using the technique described in Chapter 6, Section 5. The

second order expressions for i 2 and 12 are respectively

11ce3 s cos(3y - 20) ce s3 cos(3y- 20) 23ce 3s cos(3y -20)

900s 2 - 720 6 360

2cKss cos(3y - 20) 25ce 2s3 cos(2y + 20) 29ce2s cos(2y + 20)

3 96 144

llce3 s cos(y - 20) 2cKgs sin y 22ce 3s cos(2w) cos y
900s2 - 720 3 900s 2 - 720

CesY cos(2w) cos y 23ce's cos(2w) cos y 8CeK 2 S 3 cos y+-
3 180 3

ce 3s3 cos y 85ces3 cos y 2cK 8 s cos y 2cK 7s cos y

6 36 3 3

2ceK 2s cos y 23ce 3s cos y 20ces cos y
3 - 60 + 9(B.3)3 360 9

2ce 3 sin(3y- 20) _ceIs
2 sin(3y- 20) ce 3 sin(3y- 20)

P2 75s 2 -60 4 30

+ 4cK 5 sin(3y - 20) 17ce 2s 2 sin(2y + 20) 29ce2 sin(2y + 20)

3 72 144
+ 7ces 2 sin(y + 20) 2ce'sin(y - 20) ce 3s2 sin(y - 20)

36 75s 2 - 60 12

3ces 2 sin(y- 20) 2cK 7 sin(y- 20) llcessin(y- 20)

2 3 360
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4ce3 cos(2w) sin y + ces 2 cos(2w) sin y ce 3 cos(2w) sin y

75s 2 -60 2 15

+ 4ceKs 2 s y + ce 3 s 2 sin y 107ces 2 sin 4cK 8 sin y
6 36 3

2cK 7 sin y 23ce3 sin y1 28ce sin y 4cK9 cos y+ 9 + 3
3 360 9 3

+ 5ce 2 s2 sin(20) + 5cs2 sin(20) 5cecos(2w)# 5cC2 ,2 cos(2w)O
16 12 75.2 - 60 + 8

cc2 cos(2w)0 5ce 2 a20 5cs2 0 ce2 o cO

12 24 + 36 2B)

Substitution of (6.2) - (6.5), (6.10), (6.16), (6.17), (B.3), and (B.4) into equation

(5.24) results in

d 2 2 120e' cos(4y - 20) 5e4S4 cos(4y - 20)
dO2  =2ecos360002 - 28800 16

7eKss 2 cos(4y - 20) 31e4S 2 cos(4y - 20) _
+ 2 + 96 3eKs cos(4y - 20)

e4 cos(4y - 20) c 4 cos(4y - 40) +9e 4 cos(4y -40)

240 15000s 4 - 24000s2 + 9600 36000s2 - 28800

29e4 $ cos(4y - 40) 3eK 5s
2 cos(4y - 40) 923e 4s 2 cos(4y - 40)

192 4 5760

+ eKs cos(4y - 40) + 89e 4 cos(4y - 40) 3e3 4 cos(3y + 40)

2 7200 16

e3 s4 cos(3y + 20) 21e3s2 cos(3y + 20) 29 3 cos(3y + 20)+
48 8 12

48 0 3 cos(3y - 20) 45es 4 cos(3y - 20) _ 10K 5S2 cos(3y - 20)4-
36000s2 - 28800 16

5e 3s 2 cos(3y - 20) 17e 3 cos(3y - 20)
6 + 8K5 cos(3y - 20) + 30

35e2 54 cos(2y + 40) 3eK 7 S2 cos(2y + 20 + 2w)

32 4
3.!Kss2 cos(2y + 20 - 2w) 360e4 cos(2w) cos(2y + 20)

4 O36000s - 28800

5e4 s' cos(2w) cos(2y + 20) 1ge s2 cos(2w) cos(2y + 20)

16 96
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+ e cos(2w) cos(2y + 20) -Se 2 K 2 S4 cos(2y + 20) 95e 2 84 cos(2y + 20)
80 2 12

+ 5e 2 K 2 s 2 cos(2y + 20) 65e2 s 2 cos(2y + 20) 3eK 7 s2 cos(2y - 20 + 2w)
4 8 4

+ 3eKs 2 cos(2y - 20 - 2w) 4e4 cos(2w) cos(2y - 20)
4 15000s 4 - 240Os2 + 9600

172e4 CoS(2w) cos(2y - 20) e48 cos (2w) cos (2y - 20)
360JS 2 - 28800 8

7e 4 s cos(2w) cos(2y - 20) + 23e4 cos(2w) cos(2y - 20)
80 3600

+ 576e2K 2 cos(2y - 20) 164e 4 cos(2y - 20) + 2400e2 cos(2y - 20)
36000s 2 - 28800 36000s2 - 28800 36000s2 - 28800

e2K2S 4 cos(2y -20)- e4s4 cos(2y - 20) 257e 2s 4 cos(2y - 20)
2 72

5eK 7 s2 cos(2y - 20) 13eKss2 cos(2y - 20) 17e2K 2s
2 cos(2y - 20)

2 6 30

29e4S2 cos(2y - 20) 245e2s 2 cos(2y - 20)
+ 60 72 - 2eK7 cos(2y - 20)

5eKs cos(2y - 20) e2K 2 cos(2y - 20) 67e 4 cos(2y - 20)
3 50 3600

e cos(2y - 20) 6, cos(2y - 40) 528e2 cos(2y - 40)

12 36000s 2 - 28800 36000s 2 - 28800

e4s4 cos(2y - 40) 5e 2s 4 cos(2y - 40) 3eK 7 s
2 cos(2y - 40)

2 16 4

9eKsS2 cos(2y - 40) 121e 4 2 Cos(2y - 40) 23e2 s 2 cos(2y - 40)

4 240 240

3eK 5 cos(2y - 40) 29e' cos(2y - 40) lie 2 cos(2y - 40)

2 800 600

3eK 7s2 cos(2y - 2) + eK 7 Cos(2y + 2w) - 3eKsS2 cos(2y - 2w)
2 2

e~s os(y -2w) 7e 3 s4 cos(y + 40) 7CS' COS (y + 40)-r eK5 cos(2y - 2w) -84 8 4

7K 7s2 cos(y - 20 - 2w) + 7K 5s2 cos(y - 20 - 2w')

3 3

101



2240e 3 cos(2w) cos(y + 26) 5e-s' cos(2w) cos(y + 26)
360Y)s 2 - 28800 4

7e~s cos( :w) cos(y + 20) 7e'cos(2w) cos(y + 26)
+ 12 + 90

661e 3s 4 cos(y + 20) 47es 4 cos(y + 20)
-lOeK 2s4 cos(y + 26) + 14+ 3

144 36

+ IOeK2 s 2 cos(y + 26) 13 eSS2 Cos(y + 26) _ ses cos(y + 26)3 -24 -Gs o~ 0

+ 29e3 Cos(y + 26 ) + 2K78S2 cos(y - 20 + 2w) + 2Ks2 cos(y - 20 - 2w)
36

480e- cos(y - 20) 25e 3S4 cos(y - 20) + 1017S2 COS(y -20)

36000S2 - 28800 16
es2 cos(y - 20) 8Kcos(y -26) + 17e cos(y - 20)

-2e%
2 cos(y - 26) - 6 K 30(/-20

6 30

11200 cos(y - 40) 5e 3s4 cos(y - 40) 53s 4 cos(y - 40)

36000s2 - 28800 48 12

5K s2 cos(y - 40) 7e 3s 2 cos(y - 40) 7e' cos(y - 40) 570e4 cos(4y)
3 24 180 36000s2 - 28800

5e 4S4 cos(4y) 5eKss 2 cos(4y) 19e4 S2 cos(4y) 5eKs cos(4y)+ + - _____

32 4 192 2

13e4 cos(4y) 1120eC cos(3y) 269e3ss cos(3y) 5Kss cos(3y)

80 36000s2 - 28800 48 3

679es 2 cos(3y) 677e3 cos(3y) 816e 4 cos(2w) cos(2y)
72 180 36000s2 - 28800

+ 1e 4s4 cos(2w) cos(2y) 359e's' cos(2w) cos(2y)
--

8 240

+ 17e4 COS (2w) cos(2y) 6e e4 cos (2y) _528e 
2 COS (2y)

600 O36000s2 - 28800 36000S2 - 28800

- 1e2K2 S
4 cos(2y) + e4s4 cos(2y) _ 695e 2S4 cos(2y) 7eK 7 s 2 cos(2y)

2 96 4

5eKss2 cos(2y) 21e2K2s2 cos(2y) 121e 4s2 cos(2y)

4 2 240

3007e 2 s2 cos(2y) + eK 7 cos(2y) + eKs cos(2y) 29e' cos(2y)

240 2 800
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1137e2 cos(2y) 960eS cos(2w) cos y 15e 3s' cos(2w) cos y'

200 36000s 2 - 28800 4

15e3 s2 cos(2w) cos y + eS cos(2w) COS y + 3OeK 2 S Y
4 30

15e3s4 cos y 275es 4 COS y - 26eK 2 sO y - 3 esa2 cos y

16 24 4

61es2 cos y 7e3 cos y 5eK7 s2 cos(20 + 2w) eKs82 cos(20 + 2w)

6 6 4 4

eK 7
2 cos(20 - 2w) 5eKss2 cos(20 - 2w) 180e4 cos(40)

4 4 36000s2 - 28800

5e4 s4 cos(40) 65e 2S'4 cos(40) 5s' cos(40) 5eK7s2 cos(40)
32 32 8 4

19e4s 2 cos(40) e4 cos(40) 432e 4 cos(2w) cos(20)

192 160 36000s 2 - 28800

1056e 2 cos(2w) cos(20) 3e4s4 cos(2w) cos(20)
36000s2 - 28800 8

e2s4 cos(2w) cos(20) 19e 4s2 cos(2w) cos(20)

2 + 80

23e2 s2 cos(2w) cos(20) 3e 4 cos(2wv) cos(20) lie 2 cos(2w) cos(20)

120 200 300

276e 4 COS(20) 3e 2 K 2 
4 cos(20) S7e 4 s4 cos(20)

36000s2 - 28800 16

127e2 s4 cos(20) 7s 4 cos(20) 9eK 7s2 cos(20) 3e2K 2s2 cos(20)

16 6 2 2

+ K 2 S
2 cos(20) + 193e 4s 2 cos(20) 95e2s 2 cos(20) 2s 2 cos(20)

480 12 3

19e 4 cos(20) 2e 4 cos (2w) 2  50e 4 cos (2w) 24eK 7 cos(20) + + 1 0 O 42- S
300 15000s4 - 24000s2 + 9600 36000s2 - 28800

e4s4 cos(2o) 2  23e 4s 2 cos(2w ) 2  7e 4 cos(2W) 2  ,76e 2K 2 cos(2w)

32 960 3600 36000s2 - 28800

304e 4 cos (2"') 2400e2 cos (2w) e2 K 2s' cos(2w) 17e s4 cos (2 u)- ++
36000s 2 - 28800 36000s 2 - 28800 2 24

5e s4 cos(2L') 3eK 7s 2 cos(2w) 3eKsS2 cos(2w)

2 2 2
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19e2 K~s2 cos(2w) 533e4S2 cos(2w) 41es 2 cos(2w) + eK 7 cos(2)

60 720 24

+ eKs cos(2wv)- e2K 2 cos(2w) + 19e' cos(2w) e2 cos(2w)

+ ~sos2w - 50 + 1800 12

e4  17e 4  +2K:8' + 17e 2K2 s 4 +20K 2S4
+ 15000s 4 - 24000s2 + 9600 36000s2 - 28800 3

25e4s 4  437e 2s4  97s4 7eK 7s2 _ 2  31e2 K 2s 2  11K 2s 2  847e4s 2

+ 192 288 + 8 12 26 l 5760

139e2 a2  102 eK 7  17e 4  lle 2

+ 10s + + +2. (B.5)
72 3 720 9
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APPENDIX C

THE CRITICAL INCLINATION

This appendix contains a discussion of the critical inclination to include its

mathematical and physical basis and the methods used by various authors to deal

with the problem.

In Chapter 6 it was found that the divisor (s2in ;o2) often appeared in sec-

ond order terms. A brief explanation was given for the appearance of this divisor,

and it was shown that the apparent singularity may be dealt with in this analy-

sis in a straight-forward fashion. However, in other methods the problem divisor

has caused enormous complications. This divisor or "critical inclination" problem

appears to be universal. Hughes' investigations [Ref. 32] reveal that every ana-

lytical theory on orbit perturbation analysis contains the critical inclination as an

inherent characteristic. As stated in Chapter 2, the divisor causes an irremovable

singularity in Kozai's method. Its presence has prompted many authors to devise

very elaborate techniques to get around the problem with the result that many

otherwise elegant methods are somewhat diminished.

The mathematical reason for the appearance of the problem term is as fol-

lows. It is recalled that one of the secular effects of the Earth's equatorial bulge is

to cause the line of apsides to rotate. A first order approximation for this rotation

is given by the rate of change of the argument of perigee which from Allan [Ref.

33; is
d , 3J2n R (5cos2 i - 1)
dt -4(1 - 2 ) a2

It is readily seen that if i- 63026 ' , the perigee position is stationary and the

line of apsides does not rotate. When the usual Poisson method of successive
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approximations in terms of a small parameter is adopted for perturbation analysis,

the above equation appears in the denominator of higher order terms.

Coffey [Ref. 34] gives an excellent background discussion on the history of

the critical inclination problem. He states that A. A. Orlov (1957) was perhaps

the first to notice the unusual situation at the critical inclination. Orlov found

that the conventional Lindstedt-Poincar6 algorithm failed at this critical inclina-

tion and at zero inclination. Nevertheless, Orlov ignored these exceptional cases

and developed his theories without addressing the problem of singularities. Krause

(1952), Roberson (1957), and Herget and Musen (1958) had all overlooked this

difficulty in their assessment of the long term effects of the J2 term on the Kep-

lerian ellipse before Brouwer (1958) finally pointed out the problem to the latter

authors. Brouwer hoped that his use of von Ziepel's method of eliminating vari-

ables through canonic transformations would allow him to dispose of the terms

that lead to singularities. However, as was pointed out in Chapter 2, his solution

contained singularities at, not only the critical inclination, but also zero inclination

or eccentricity.

Finding no method to fit the critical inclination problem into current theories,

astronomers have devised alternative theories to deal with orbital inclinations near

63'.4. The critical inclination, they reasoned, was a small divisor problem and

therefore could be handled in the standard way introduced by Bohlen [Ref. 35'.

That is, in the vicinity of the critical inclination, the solution may be expressed

in terms of the square root of a small parameter, i.e., v7 instead of J. [Ref. 36 i .

The resulting solutions are totally different in character to the non-singular case

[Ref. 30. For example, instead of precessing secularly the argument of perigee

will tend to oscillate about a central position. Taff notes the lack of mathematical

rigor in this method of handling the critical inclination by stating that expansions
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in N/Y and theories about the libration of perigee are a result of misapplication of

perturbation theories [Ref. 18, p 3401.

Usually when singularities arise in celestial mechanics there is a physical

reason for their occurrence. For example, singularities in the solutions for the

motion of asteroids and natural satellites are caused by the fact that their orbital

periods are nearly commensurate with that of the disturbing body. Under the same

circumstances, an artificial satellite may encounter resonant perturbations in its

orbital elements caused by tesseral harmonics. However, such a physical reason

does not seem to suggest itself for the critical inclination problem. Message [Ref.

37] implied that there may be a resonance between the satellite's mean motion

relative to perigee and its mean motion relative to the ascending node; however,

most skeptics have not been convinced [Ref. 32]. If there were resonance one would

expect to be able to experimentally measure deviations caused by resonances,

but satellite guidance engineers have reported no adverse effects at the critical

inclination.

Another check on the physical effects of resonance should be a numerical

check of the equations of motion at the critical inclination; however, this too

has been inconclusive. Lubowe [Ref. 38] carried out a study in which he inte-

grated a satellite's equations of motion for periods up to 24 hours with various

initial conditions at inclinations near and away from the critical. He found no

discernible features, in the perturbations which distinguished the critical from any

other. However, in a separate analysis, Hughes came to the opposite conclusion.

Hughes developed the Hamiltonian in terms of the Hill variables and showed that

the critical inclination remained an inherent part of the solution throughout a

multitude of various canonic transformations. He then integrated the equations

of motion numerically and was able to show some resonant effects in the perigee
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height for satellites at the critical inclination. He then reasoned from this analysis

that the critical inclination is unique, that it represents actual physical resonance

and that it is not merely a by-product of the method of solution or the type of

variable used in the analysis.

This disagreement characterizes the lingering debate over the question of

whether the critical inclination is an artifact of the analysis process or a physical

reality. Most textbooks choose to mention the problem; however, few voice an

opinion. Roy [Ref. 20] devotes only two sentences to the subject, merely noting

that some perturbation analyses break down there. Hagihara [Ref. 39], mentions

that the critical inclination is an essential feature of the perturbation process

but notes that heated discussions continue concerning its physical reality. Other

authors, namely Herrick [Ref. 40' , Kovalevsky [Ref. 41], and Geyling [Ref. 11

mention the problem and the standard procedure for dealing with it, but they

make no mention of physical effects. Taff [Ref. 18, p 340 takes a firmer position

by stating that it is not a prediction of second-order perturbation theory that

there are infinitely large or infinitely rapid changes in the orbital elements, and

that the correct resolution of these "unphysical" predictions is not to rely on bad

mathematics.

This present analysis lends support to Taff's assertion. Although the criti-

cal inclination problem was manifested in the perturbation process, it was shown

that it does not cause singularities, nor are there any unusual physical effects pre-

dicted by this theory. In fact, it was a remarkable aspect of this analysis that

in the limit as the inclination approached the critical, all potential singularities

were canceled. This is not true of the analyses which use the technique of De-

launey von Ziepel canonic transformations. A remarkable aspect of the canonic

transformation method is that the non-integrability of the equations of motion
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is not obvious when the system is expressed in coordinates or elements, but after

the canonical transformation it is quite clear [Ref. 42]. The critical incliration is

an intrinsic singulatity of the method [Ref. 32].
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